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ABSTRACT

Sequences with good correlation and distribution properties
play a central role in various areas of signal processing. In this
paper, we propose an efficient computational framework for
designing sequences with two key properties: (i) an impulse-
like auto-correlation, and (ii) a probability distribution of se-
quence entries which is uniform in nature; although the results
can be easily extended to an arbitrary distribution. The pro-
posed method is based on utilizing the Fast Fourier Transform
(FFT) operations, and thus can generate very long sequences
in small time frames. Several numerical examples are pro-
vided to exhibit the performance of the suggested construc-
tion framework.

Index Terms— Auto-correlation, integrated-sidelobe
level (ISL), Parkinson’s disease, sequence design, uniform
distribution

1. INTRODUCTION

Sequences with good correlation properties are necessary
components in a wide range of signal and information pro-
cessing applications including active sensing, spread spec-
trum communication systems, radar sensing, signal synchro-
nization and cryptography [1–7]. For example, sequences
with small auto-correlation improve the performance in pulse
compression radars. In CDMA (Code-Division Multiple Ac-
cess) systems it is also desirable to have small correlation
for better synchronization purposes, as well as separation of
multiple users. Due to such extensive range of applications,
one can find a rich literature on the design of signals with
small auto-correlation sidelobe [1, 3, 8–11]. However, until
now there has been very little effort on designing sequences
possessing good correlation and good distribution properties
which has crucial potential applications in biomedical system
identification [12]. In this paper, we focus on this critical
aspect missing from the recent signal design approaches de-
veloped in the literature— i.e. the distribution properties
of the signal itself. Some important applications such as
biomedical signal processing often requires sequences with
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good correlation properties as well as a user defined distribu-
tion properties for the purpose of system identification. Such
an application in the context of Parkinson’s Disease (PD)
diagnosis and treatment, has been discussed in Section 1.1.

In our approach, we will use the Cyclic Algorithm-New
(CAN), a computational framework introduced in [11], in or-
der to achieve low out-of-phase auto-correlation, and at the
same time, achieve the desired distribution by incorporating
a sort-based algorithm to form partitions for various distri-
bution bins. Note that CAN is based on FFT operations and
can be effectively used for values of sequence length N up to
N ∼ 106 or even larger.

The remainder of the paper is organized as follows. The
application of signals with good correlation and good distri-
bution properties in Parkinson’s Disease (PD) diagnosis and
treatment has been put forward in Section 1.1. Section 2 talks
about the necessary background required for the proposed al-
gorithm which is discussed in Section 3. Numerical results
are given in Section 4. Finally, Section 5 concludes the paper
with a proper view of future research aspect.

Notation: We use bold lowercase letters for vectors and
bold uppercase letters for matrices. (·)T , (·)∗ and (·)H denote
the vector/matrix transpose, the complex conjugate, and the
Hermitian transpose, respectively. ‖x‖n or the ln-norm of
the vector x is defined as {

∑
k |xk|n}

1
n where xk is the k-th

entry of x. 0N is the all-zero vector of order N × 1. Also
for a real number r, [r] denotes the integral part of r, i.e. the
greatest integer ≤ r; also r = r − [r] denotes the fractional
part of r. Here we note that, the fractional part of any real
number is contained in the unit interval I = [0, 1).

1.1. An Application to Biomedical System Identification

Currently, the status of PD in a patient is evaluated through the
Unified Parkinson’s Disease Rating Scale (UPDRS) which is
very time consuming and is very time consuming and prone
to human error [12]. Hence, it is of great interest to search for
tools that facilitate a quick and objective quantification of the
PD status. The new framework of eye tracking for quantify-
ing (or system identification [2] of) the human smooth pursuit
system (SPS) promises a solution to such difficulties with a
revolutionary potential [13]. It has been shown that the SPS
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is meaningfully affected by the PD and that the severity of
the impairment is related to the progression of the disease
[14–16]. Nonetheless, among the several methods for SPS
quantification, eye tracking is the only non-invasive method
suggested by the literature.

In an eye tracking system, the visual stimulus consists of
a moving circle whose trajectory is the signal to be designed,
and the eye’s gaze direction is the output. One approach for
the SPS analysis is the system theory approach where the SPS
is mathematically modeled as a parameterized dynamical sys-
tem correlating gaze direction to visual stimulus using the
behavior of the SPS by imposing general restrictions on the
model variables. In such a scenario, sequences with not only
good correlation properties but also a well defined distribution
is required in order to identify the system with high degree of
accuracy [12].

It is widely known that a judicious design of the prob-
ing signals has a significant impact on the performance of
identification. In particular, it was shown that signals with
good correlation properties (i.e. with low out-of-phase auto-
correlation lags) are influential for high performance SPS
quantification, owing to their unique spectral properties [17].
The goal of this paper is thus not only to design and study
signals possessing good correlation properties but also signals
that follow a given distribution; preferably a uniform distri-
bution, however can be converted to any other distributions.

2. PROBLEM FORMULATION

An efficient approach to sequence design for system identifi-
cation is to seek for sequences with small out-of-phase auto-
correlations, also referred to as good correlation properties.
Let x ∈ CN be a sequence whose periodic (ck) and aperiodic
(rk) auto-correlations are defined as

ck ,
N∑
n=1

xnx
∗
n+k(mod N)

, (1)

rk ,
N−k∑
n=1

xnx
∗
n+k = r∗−k, (2)

for all 0 ≤ k ≤ N − 1. The energy of x is given as the inner
product xHx which is equal to c0 = r0, and the out-of-phase
lags are those with k 6= 0. The integrated sidelobe level (ISL)
of the sequence x is defined as,

ISL ,
N−1∑
k=1

|rk|2. (3)

The main focus of this paper is on the algorithms for mini-
mizing the ISL or ISL-related metrics over a set of sequences.
The significantly large application area of sequences with
good correlation (in particular, with small ISL) has produced
an active area of research in sequence design, and as a result,
there is a rich (yet growing) literature on this topic.

On the other hand, a generic definition of (sequence x
with) uniform distribution can be given as follows [20]: The
sequence x = {xn}Nn=1 of real numbers is said to be uni-
formly distributed if for every pair a, b of real numbers with
0 ≤ a < b ≤ 1 we have

lim
N→∞

C([a, b);x)

N
= b− a (4)

where, C(E;x) is the counting function defined as the number
of values xn (1 ≤ n ≤ N ) for which {xn} ∈ E.

In our proposed method, we achieve sequences with uni-
form distribution by partitioning the sequence entries into a
number of range bins and populating each bin with (almost)
same number of elements building a uniform histogram). In a
discrete sense, for the sake of simplicity, we rewrite the defi-
nition of uniform distribution as follows:

Definition 2.1. A sequence x = {xn}Nn=1 of real numbers
partitioned into P equi-spaced range bins denoted as {pi}Pi=1,
can be called uniformly distributed if the number of elements
in each bin, denoted as C(pi;x) follows:∣∣∣∣C(pi;x)− N

P

∣∣∣∣ ' 0, i ∈ {1, 2, · · · , P}, (5)

where the above expression is as small as possible, pertinent
to cases where N is not perfectly divisible by P .

Surprisingly, defining a sequence based on its elements’
membership to the range bins will also provide an extra con-
trol to modify the distribution of the sequence itself at a later
point.

3. THE PROPOSED METHOD

In the following, we describe in detail our proposed design
approach for generating highly uncorrelated sequences with a
uniform distribution.

3.1. Construction with Low Correlation

The CAN algorithm in [11] provides an efficient mathemati-
cal formalism confirming our intuitive observation that a se-
quence with small out-of-phase periodic correlation has a flat
spectrum in the frequency domain. Following such observa-
tion, the periodic out-of-phase correlations of a sequence x of
length N can be optimized conveniently by following mini-
mization problem:

min
x,v

‖AHx− v‖22

(6)

where A denotes the N × N (inverse) DFT matrix, whose
elements can be given as,

[A]k,l =
1√
N

exp {j2πkl/N}, k, l = 1, · · · , N (7)
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Data: h, N, P
Result: ĥ , {ĥn}Nn=1

initialize n = 1;
maxnum← floor(N/P );
while n ≤ N do

bin index← ceil(n/maxnum);
if hn < lower edge(bin index) then

ĥn ← lower edge(bin index);
else if hn > upper edge(bin index) then

ĥn ← upper edge(bin index);
else

ĥn ← hn;
end
n← n+ 1;

end

Algorithm 1: Optimal modification of h according to the
edge values, and their corresponding range bins.

Table 1. Algorithm for Construction of Uniformly Dis-
tributed Sequences with Low Auto-Correlation

Input parameters: sequence length N , number of range
bins P .

Step 0: Initialize x using a randomly generated sequence.
Step 1: Compute v̂ using (10).
Step 2: Compute x̂ using (12).
Step 3: Compute h using (13) and preserve the index of
each elements of original sequence x̂ in Ia(x̂).
Step 4: Partition h into P bins of equal length and compute
the edges of each bin.
Step 5: Modify the elements of h using Algorithm 1.
Step 6: Compute x̄ by restoring the index order previously
stored in step 3.
Step 7: Let d = ‖ÃH x̃ − ṽ‖2. Repeat steps 1–6 until
|d(s)−d(s−1)| ≤ 10−6 where s denotes the iteration number.

where j2 = −1 and v is the representation of x in Fourier
domain. Here, x is constrained to have given distribution, as
in (5). Observe that, the aperiodic correlations of x can be
given in terms of periodic correlations of the sequence x̃ =
[x 0N ]T .

Hence, in the aperiodic case, we can consider the follow-
ing frequency-domain design problem to minimize the aperi-
odic out-of-phase correlations of x:

min
x̃,ṽ

‖ÃH x̃− ṽ‖22 (8)

in which Ã denotes the 2N × 2N (inverse) DFT matrix, and
also x is constrained to have uniform distribution as previ-
ously described.

Note that for a given x̃, the minimization of (8) with re-
spect to ṽ is straightforward. Let

f , {fn}2Nn=1 = ÃH x̃ (9)

denote the FFT of x̃. The optimum ṽ, denoted as v̂ can be
obtained as

v̂ =
1√
2

[ejψ1 · · · ejψ2N ]T (10)

where ψn = arg {fn}, for n = 1, · · · , 2N . Similarly, for
fixed ṽ, we denote IFFT of ṽ as, g , {gn}2Nn=1 = Ãṽ.

Observe that,

‖ÃH x̃− ṽ‖22 = ‖x̃− Ãṽ‖22. (11)

It follows from the above that the minimizer x of (8), denoted
as x̂ , {x̂n}Nn=1 is simply given by

x̂n = gn, n = 1, · · · , N. (12)

3.2. Construction with Uniform Distribution

In this section, we extend our previous formulations to en-
force a uniform distribution for the sequences obtained from
the above framework, and particularly (11). This goal will be
accomplished by finding the minimizer x of (8) that has a uni-
form distribution. In other words, the nearest-vector problem
in (11) is to be solved by a projection on the set of sequences
with a uniform distribution. Therefore, we will revisit the
concept of histogram equalization.

It is not difficult to verify that the aforementioned pro-
jection can be computed by segmenting the sequence entries
into smaller range bins, and aiming to achieve a uniform dis-
tribution inside these smaller bins so that by controlling the
smaller range bins, a sequence with a given distribution can
be generated. The algorithm is as follows: we first sort the
sequence entries in an ascending order to form

h = Sa(x̂) (13)

where Sa(·) denotes a sorting operation (in ascending order)
on the vector argument. Along with sorting, we also preserve
the index of each element in the original sequence x̂ in an
index array Ia(x̂).

Next, we partition h into P equi-sized range bins, where
1 ≤ P ≤ N . Note that, P = 1 resembles the whole se-
quence in one single bin, whereas P = N suggests each bin
pi contains only one element x̂i. Naturally, both situations are
not desirable for optimum distribution induction. Therefore,
we choose P such that the sequence length N is divisible (or
closely divisible, if N is prime) by P and also large enough
to achieve a smooth transition between two consecutive bins.
Finally, we compare the values of each element with the cor-
responding bin’s edge values and modify those elements ac-
cording to Algorithm 1. Once we have modified ĥ, we are
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(a) (b)

Fig. 1. The initial and final (a) normalized aperiodic auto-correlation, and (b) histogram of constructed sequence of length
N = 103 and P = 20 using the proposed algorithm.

(a) (b)

Fig. 2. The initial and final (a) normalized aperiodic auto-correlation, and (b) histogram of constructed sequence of length
N = 104 and P = 250 using the proposed algorithm.

easily back to our optimal sequence x̄ by employing the in-
dex array of Ia(x̂). Note that the optimality of projection can
be shown easily but is omitted herein for the sake of brevity.

The iterative algorithm for construction of the desired se-
quences with good correlation and good distribution proper-
ties is summarized in Table 1.

4. NUMERICAL RESULTS

We provide several numerical examples to investigate the per-
formance of the proposed method. We use the proposed ap-
proach to design uniformly distributed sequences of length (i)
N = 103 with number of partitions P = 20, and (ii) N =
104 with partition P = 250 using rand function in MAT-
LAB. Although rand provides fairly uniformly distributed
random sequences but is not at all uniform inside a range bin.
For both cases the initial and final normalized aperiodic auto-
correlation level (NAPC) = 20 log10 |rk/r0| in dB.

are presented in Fig. 1(a) and 2(a). We also present the
initial and final histogram of the both sequences in Fig. 1(b)
and 2(b). A significant improvement in terms of both auto-
correlation and distribution can be observed in both cases. It
should also be noted that the generation of sequences using
the proposed method was relatively fast in terms of computa-

tional time. Particularly, it took 1.56 secs and 57.39 secs on
a standard PC to accomplish the sequence design for the first
and second cases described above, respectively.

5. CONCLUSIONS AND FUTURE WORK

Signals with both good auto-correlation and good distribu-
tion properties are required in eye tracking for Parkinson’s
Disease diagnosis and treatment. We have presented a new
framework to design such signals based on the CAN compu-
tational framework. The proposed method is computationally
efficient and can design very long sequences (of lengths
up to N ∼ 106 and even more) in relatively short time
frames. The designed sequences using the proposed algo-
rithm show significant enhancement in terms of out-of-phase
auto-correlation as well as distribution properties. While the
numerical examples showed promising results, as a future
research direction, it would be of great interest to study the
behavior of ISL or other correlation related metrics and par-
ticularly their relationship with given marginal distributions.
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