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Abstract—This paper proposes a learning-based approach
to mitigate the shadow effect in the pixel domain for Tera-
hertz Time-Domain Spectroscopy (THz-TDS) multi-layer imag-
ing. Compared with model-based approaches, this learning-based
approach requires no prior knowledge of material properties of
the sample. Preliminary simulations confirm the effectiveness of
the proposed method.

I. INTRODUCTION

Over the past years, there has been an increased interest
in the use of terahertz wave for gas sensing, non-destructive
evaluation, and security screening. In Fig. 1 (a), the time-
domain spectroscopy (THz-TDS) system sends an ultra-short
pulse (e.g., 1-2 picoseconds) to image layered structures of a
sample in a raster scanning mode, thanks to its capability of
penetrating a wide range of non-conducting materials.

In the raster scanning mode, the sample under inspection is
illuminated by a THz-TDS point source and a programmable
mechanical raster moves the sample in the plane perpendicular
to the incidental waveform in order to measure the two-
dimensional surface of the sample. Single-layer and multi-
layer content extractions have been tested in [1]–[4]. One issue
here is, due to either irregular sample surfaces or vibration
from the mechanical raster move, to deal with depth variation
and its induced delay variation from one pixel to another.

Another challenge is to mitigate the shadow effect caused by
non-uniform penetrating illumination from front layers to deep
layers and consequent non-uniform reflected THz waveforms.
This shadow effect has been observed in various THz-TDS
imaging results, e.g., Fig. 3 in [2] and Fig. 9 in [5]. Our own
experiment on multi-layer hardboard papers, as shown in Fig. 1
(b), also shows clear shadow of the three letters (i.e., ‘A’, ‘T’
and ‘C’) on the first layer onto the three letters (i.e., ‘M’, ‘E’
and ‘L’) of the second layer.

In the literature, only a few efforts were proposed to address
this challenge either by assuming known wave propagation
models from one layer to another [6] or by exploiting the
image-domain composition over layers and taking into account
the finite alphabet of letters. However, practical factors such
as uncertainties on material parameters and device-dependent
emitter/receiver specifications significantly impact their perfor-
mance. The problem of interest here is to mitigate the shadow
effect by learning the nonlinear mapping from one layer to
another using labelled training data in the pixel domain.
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Fig. 1: (a) THz-TDS multi-layer imaging with a raster scan-
ning (from [2]); (b) our own THz-TDS experiment shows clear
shadow of three letters (i.e., ‘A’, ‘T’ and ‘C’) on the 1st layer
onto the 2nd layer.

II. PROPOSED METHOD

For the THz-TDS imaging, the time-domain waveform is
recorded for each pixel at a spot size of the THz emitter and
it can be considered as a convolution between the reference
waveform and the multi-layer structure. For instance, in Fig. 2
(a), we highlight two pixels (denoted by red and blue squares)
over a three-layer sample. Fig. 2 (b) shows reflected time-
domain waveform corresponding to the two pixels. For the
pixel in red, one can clearly see three positive peaks corre-
sponding to the front surface of each layer and small negative
peaks (partially overlapped with positive peaks) corresponding
to the back surface of each layer. On the other hand, for the
pixel in blue, one can see two dominating peaks due to the
stronger reflection on the ink on the first two layers. The third
peak almost disappears due to less energy penetrating through
the first two layers. Moreover, it is observed that the arrival
times of the peaks for the two pixels are slightly different due
to depth variation caused by curved sample surface and depth
vibration from the mechanical raster scanning.

As a result, for each pixel, we propose to associate the time-
domain waveform with corresponding content on the front and
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Fig. 2: THz-TDS time-domain waveforms in the pixel-domain.
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Fig. 3: The proposed DNN architecture for THz-TDS multi-
layer imaging.

back surfaces of each layer. Specifically, we use a 2L × 1
binary content vector (e.g., [0, 0, 0, 0, 0, 0]T for the pixel in
red in Fig. 2) to label the L layers, where 1 means that there
is a content while 0 denotes no content. By collecting time-
domain waveforms for a large number of training pixels, we
use the deep neural network (DNN) to learn the nonlinear
mapping from the waveform sequence to the content vector.

Fig. 3 shows our proposed DNN architecture for THz-TDS
multi-layer imaging. The DNN feeds (truncated) THz-TDS
time-domain waveforms and outputs estimated binary content
vector. We can also expand the input waveform by including
time-domain waveforms from nearby pixels according to the
THz-TDS aperture size. Particularly, we truncate the full-
length time-domain waveform into a 1024× 1 real vector and
this waveform vector is fed into the input layer of the DNN,
where the input layer first transforms to 200-node dimensions
by a fully-connected linear layer. The DNN then employs
two hidden layers having 200 nodes per layer, consisting
of batch normalization layer, rectified linear unit (ReLU)
activation layer with 10% dropout, and fully-connected linear
layer. The dropout is a well-established technique to prevent
over-fitting for improved generalizability. Additionally, we
consider a skip connect jumping from the input of hidden
layers to the output of hidden layers in order to learn residual
gradient for improved training stability, i.e., ResNet [7]. A
fully-connected linear layer following an activation layer with
dropout produces the output of the DNN. The DNN is trained
to minimize the softmax cross-entropy loss to predict the
2L× 1 content vector from labeled training pixels.

III. SYNTHETIC VALIDATION

We verify this learning-based approach using synthetic data
generated using the ray-tracing model with random depth
variation. Then we apply the learned representation to estimate
the content vector of the test dataset corresponds to a sample
of three-layer stacked paper. As illustrated in Fig. 2, three
letters are plotted on each layer. To generate the reflected time-
domain waveform, we use a reference waveform (as shown in
Fig. 4 (a) and (b)) from a real-world THz-TDS experiment.
The conventional multi-layer imaging is to first identify layer
by properly identifying time-domain peaks using peak values
and nearby waveforms and then align up the peak magnitude
(additional tuning can be done using local spectral features).
Fig. 4 (c) shows clear shadow effects on the aligned peak
magnitude.
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Fig. 4: Synthetic validation using experimental THz reference
waveforms ((a) time-domain waveforms and (b) spectrum); (c)
Peak magnitude spectrum shows clearly shadow effects and (d)
recovered content from the learning-based approach.

On the other hand, for the learning-based approach, the
DNN training was performed by adaptive momentum (Adam)
stochastic gradient descent method with a learning rate of
0.001, and a mini-batch size of 100. The maximum number of
epochs is 500 while early stopping with a patience of 20 was
taken place. By placing the estimated content vector in the
correct pixel order, the multi-layer imaging results are shown
in Fig. 4 (d), where the shadow effect is largely suppressed
on the second and third layers. However, one can still notice
artifacts on the third layer.

IV. CONCLUSION

In this paper, we used the proposed DNN architecture to
learn the nonlinear mapping from the time-domain waveform
to a finite-dimensional binary content vector. Preliminary syn-
thetic validation shows promising results on shadow mitigation
and robustness against the depth variation. We plan to include
more realistic synthetic modeling (including aperture size, sur-
face granularity and varying sample material properties) and
collect real-world THz-TDS data for experimental validation.
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