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Abstract—In this paper, we investigate the problem of jointly
optimizing the waveform covariance matrix and the antenna
position vector for multiple-input-multiple-output (MIMO) radar
systems to approximate a desired transmit beampattern as well as
to minimize the cross-correlation of the received signals reflected
back from the targets. We formulate the problem as a non-
convex program and then propose a cyclic optimization approach
to efficiently tackle the problem. We further propose a novel
local optimization framework in order to efficiently design the
corresponding antenna positions. Our numerical investigations
demonstrate a good performance both in terms of accuracy and
computational complexity, making the proposed framework a
good candidate for real-time radar signal processing applications.

Index Terms—Antenna selection, MIMO radar, non-convex
optimization algorithms, waveform design.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar has been an
emerging technology during last two decades, attracting a
great deal of interest from researchers in radar and signal
processing communities [1]-[13]. One of the main advantages
of MIMO radar systems compared with the traditional phased-
array radars is their ability to transmit multiple probing wave-
forms allowing for transmitting arbitrary waveforms (spatial
diversity). Briefly speaking, the waveform diversity provided
by a MIMO system can increase the resolution and sensitivity
to target movements, and specifically, paving the way for
applying adaptive array processing techniques. An important
task in MIMO radar systems is thus to design the probing
waveforms to approximate a desired beampattern, and to
further minimize the cross-correlation of the signals reflected
from various targets, and from reflections of other waveforms.
Alternatively, one can consider the design of the probing signal
covariance matrix as it provides more degrees of freedom
compared to designing the waveforms directly [14]—-[22].

A large part of the existing research on covariance waveform
design focuses mainly on the scenario with a uniform linear
array (ULA) and half-wavelength inter-element spacing in
order to match a desired beampattern. However, such de-
signs are typically concerned with statistical properties of the
transmitted waveforms rather than incorporating a design of
the positions of the transmit antennas as well. Recently, it
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Fig. 1. Geometry of a MIMO radar with M grid points. Only N grid points
can be used for antenna placement.

was shown in [19] that unlike a ULA configuration where
the total number of antennas and their positions are fixed,
one can achieve additional degrees of freedom by carefully
designing the antenna positions on a grid point for approx-
imating the transmit beampattern with the same number of
antennas (distributed non-uniformly on a grid point). As a
result, assuming the total number of transmit antennas is fixed,
a joint optimization of the covariance matrix and the antenna
selection vector can achieve superior results compared with
methods operating on a ULA configuration.

In this paper, we propose a novel cyclic optimization
approach to efficiently tackle the non-convex nature of the
joint optimization of the waveform covariance matrix and
antenna positions, and furthermore, in order to efficiently
design the corresponding antenna positions, we introduce a
binary local optimization algorithm. Our method allows for
generating waveform covariance matrices with low cross-
correlation properties by exploiting the additional degree of
freedom in designing the antenna positions.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the problem of placing N transmit antennas
placed on a non-uniform linear array (ULA) positions with
M(> N) grid points with equal grid spacing d, in order
to produce a desired beampattern as depicted in Fig. 1. Let
Sm(l), with m € {1,--- ,M} and [ € {1,---,L}, denote
the transmit signal from m-th antenna, where L is the signal
length in discrete-time and s(l) = [s1(1),s2(1),- -+, sar(1)]"
is the space-time transmit waveform with length M L, where
()T represents the transpose of a vector/matrix. Assuming a
narrow-band signal model and non-dispersive propagation, the
M -dimensional steering vector at an arbitrary angle 6 is given
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by a(f) = [1,e/ A0 ..
the wavelength of the transmitted signal.

- 27 .
,el X , where )\ is

: (M—l)dsine]T
Let us introduce a binary antenna position vector to repre-
sent the antenna configuration as

pP= [p17p2a”' yPmy - 7p1\4]T5 Pm 6{071}7 (1)
where p,, = 1 indicates that the m-th grid point is selected
for antenna placement; otherwise we have p,, = 0. The
corresponding waveform at the target location at the direction
0 with respect to (w.r.t.) the ULA is then given by,

() =(poa(®)’sl), 1e{l,---,L}, (2
where © denotes the Hadamard product and () represents
the conjugate transpose of the argument vector/matrix. Con-
sequently, the power produced by the waveforms at a generic
direction € can be written as

P(0) = E{z(1)*} 3)
=(poa(®)"E{s()s" (1)} (p © a(h))
=p™R {R ® (a(0)a" (0))" } P

where
R=E{s(l)s" (1)} “

is the covariance matrix of the transmit waveforms s(l), to be
designed. Here E{-} and R{-} represent the expected value
and the real part of their argument, respectively. Furthermore,
(-)* denotes the conjugate of the argument vector/matrix.

Let d(f) denote the desired transmit beam-pattern, and
{0} | be a grid of points that covers the radial sectors of
interest. We assume that the said grid comprises of points
which are good approximations of the locations of K targets
of interest that we wish to probe at locations {f;}X . In
addition, we assume that some partial information regarding
the target positions are available at hand, e.g., we possess some
initial estimates {; }/, of {Ax}_,. Thus one can form the
desired beam-pattern as follows (with K being the resulting
estimate of K ):

gy = b 0elbp—5.00+%], ke{l, - K},
0, otherwise,

where A is the chosen beam-width for each target.

Our goal is to design the waveform covariance matrix R as
well as designing the antenna positions (i.e. optimizing p) such
that the transmitted beampattern P(6) approximates a given
beampattern d(f) over the radial sectors of interest in a least
squares (LS) sense, and also such that the cross-correlation of
the reflected waveform from the targets is minimized. One can

formulate this problem by defining a cost function as follows

[5]:

J(p, R, ) (5)
K
_ % Sy ’pTER {RO (a0r)a" (00) }p - ad(ek)f
k=1
beampattern matching term
K-1 K . o 9
+ K(?_ 1) & q:zp;l ’pT%{RQ (a( p)aH(eq)) }p’

cross-correlation term
where wy, > 0,k =1,--- | K, is the weight for the k-th radial
sector and w. > 0 is the weight for the cross-correlation term
and o > 0 is a scaling parameter to be designed. In the next
section, we propose our optimization method allowing us to
not only optimize the covariance matrix but also the antenna
positions.

III. OPTIMIZATION ALGORITHM

The joint optimization problem of designing the transmitted
waveform covariance and the antenna position can be formu-
lated as

min J(p, R, ) (6a)
p, R,

st. R0, (6b)

Ry = ﬁ form=1,---,M,  (6c)

Ipll1 =N, (6d)

pm =190,1}, form=1,--- M, (6e)

a>0 (61)

Since R is a covariance matrix, it must be positive semidefinite
as well as all antennas are required to transmit uniform power.
These two conditions are enforced in constraints (6b) and (6¢).
Furthermore, the constraints (6d) and (6e) guarantee that only
N antennas are to be placed in M (> N) possible grid points,
and that the vector p is binary.

It is not hard to verify that the optimization problem in
(6) is mixed Boolean-nonconvex in nature and hard to solve
for a global solution. In order to tackle such non-convexity,
we propose a cyclic optimization approach with respect to
the design variables (R, «) and p. Note that, although the
optimization problem w.r.t. the antenna position vector is
non-convex, our approach converges to a good local minima
quickly.

A. Optimization for R and o

For a fixed p, the solution to the minimization problem with
respect to the design variables (R, «) in the ¢-th iteration can
be cast as

(R(t)’ a(t)) = arg rgin J(p(t_1)7 R, a) (7
Ny
s.t. REO, Oé>0a

Rmm:%, form=1,---, M.
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It is easy to verify that the above optimization problem can
be reformulated as a constrained convex quadratic program,
and hence, can be solved efficiently using off-the-shelf convex
solvers (such as CVX [25]).

B. Optimization for p

For fixed (R, «), the solution to the optimization of the
antenna selection vector p can be written as follows

p"*Y = argmin J(p, RV, o), (8)
P

s.t. |lplh = N, p € {0, 1},

which we solve using the following proposed local binary op-
timization framework. Especially, we develop an optimization
approach equipped with a simple local search procedure. In
the following, we discuss the proposed method in order to
design the antenna position vector p, in detailed manner.

For a given (R, «), let us denote the objective function (5)
as J(p) whose solution p is a binary vector of length M
with N non-zero elements. In other words, our search space
is none other than a subset of vertices of a hypercube in an M-
dimensional space, which is discrete with bounded cardinality.
Hence, we undertake a deterministic strategy as opposed to
stochastic approaches in order to find a solution in an iterative
manner. Note that, the binary vector p of length M represents
a hypercube with 2 vertices. Given the solution p*) (parent
solution) at iteration k, a new set of candidate solutions péksﬂ)
is generated as follows:

ps™ ={p 1 # (p.p™) =1 Iplh < PP}, ©

where H(xz,y) denotes the Hamming distance between the
two vectors, and is defined to be the number of positions ¢ such
that z; # y;, where the subscript ¢ denotes the i-th element of
the corresponding vector. In other words, given a parent solu-
tion p(k), the new set of candidate solutions is generated as the
set of vectors which only differs from p(*) in one bit (with one
less non-zero element only). Hence, the cardinality of the new
candidate solution is upper bounded by ’p(cksﬂ)’ < lp™|;.

The next task is to select and propagate the best candidate
solution (i.e., the one with the lowest objective value) to
the next iteration of the algorithm. Given the current set of
candidate solutions pg;), we select the best solution p*) to
be considered for generating new candidate solutions at the
next stage as follows:

p®) = arg mirllc J(p). (10)

peply
Next, the solution p(*) is used as the seed for generating new
candidate solutions in the next iteration of the algorithm. Note
that the above selection strategy is a one-step local search
on the objective function J(p) on a subset of vertices of a
hypercube of dimension M.

Let BY be the set of all vertices of an M-dimensional hy-
percube with N non-zero elements. Clearly, we aim to find the
optimal antenna selection vector p* € BA/. Note that, once the
selection procedure selects a vector p(*) as its output such that

TABLE I
THE PROPOSED JOINT OPTIMIZATION METHOD

Step 0: Initialize the antenna position vector p<0> = 1jy, the complex
covariance matrix R() ¢ CNXN “and the scaling factor a0 ¢ R4,
and the outer loop index ¢ = 1.

Step 1: Solve the convex program of (7) using the procedure described
in Section III-A and obtain (R®), a(")).

Step 2: Employ the proposed local binary optimization approach de-
scribed in Section III-B and solve the antenna position design program
of (8) to obtain the vector p(t+1).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,
eg H (pW,ptt—b) = 0.

p*) € BY! or equivalently ||[p*)||; = N, then one can easily
argue that a locally (or possibly globally) optimal solution is
obtained and that p* = p(*) for the k-th iteration. This can
be seen by noting that p(*) € BY implies p(*~1) ¢ B 1
Hence, one can conclude that if p*) € B!, then p(*) is a
local optimal point in a 1-Hamming distance neighborhood
of p*+1) such that |p®|; < ||[p*~V|;, and that p*~1) ¢
B 1 1- Moreover, the cardinality of the search space in the
1-Hamming distance local search in (10) is at most ||p*~1||;
(.., as we had earlier that ‘p(cké) < lp*~[)1), and as a
result the search space is reduced in each (inner) iteration.

As it was discussed earlier, we consider an alternating
(cyclic) optimization approach to solve the joint optimization
of covariance matrix and the antenna position vector. Finally,
the proposed cyclic optimization approach is summarized in
Table I.

IV. NUMERICAL EXAMPLES

In this section, we provide several numerical examples in
order to assess the performance of our proposed algorithm.
We compare our method with the ADMM-based algorithm
proposed in [19]. In the following experiments, we assume
a colocated narrow-band MIMO radar with a non-uniform
linear array with M = 15 grid points with half-wavelength
inter-grid interval i.e., d = \/2, unless stated otherwise,
and N = 10 antennas. The range of angle is (—90°,90°)
with 1° resolution. We set the weights for the k-th angular
direction as wy = 1, for k = 1,--- , K; and the weight of the
cross-correlation term as w, = 1.

In Fig. 2 we compare the resulting beampattern with
the desired one for the two scenarios of w, = 0 and
we = 1. In addition we provide the simulation results of
[19] for three mainlobes at § = {—50°,0°,50°}. In Fig.
3, we consider approximating the beampatterns with one
mainlobe at § = 0°, and a beamwidth of 60°. Furthermore,
in Fig. 4, we consider approximating the beampattern with
6 = {-60°,-30°,0°,30°60°} and a beamwidth of 10°.
As it can be seen from Figs 2—4, our proposed method can
accurately match the desired beampattern. Also, note that our
propose algorithm outperforms the one proposed in [19] in
terms of accuracy, and moreover, is capable of designing wave-
form covariance matrix with low cross-correlation, unlike [19].
Further note that the designed beampatterns obtained with
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Fig. 2. The transmit beampattern design for M = 15, N = 10 with
and without the cross-correlation suppression with three mainlobes at 8 =
{—50°,0°,50°} with a beamwidth 20°. Note that the designed beampatterns
obtained with and without considering the cross-correlation term are similar
to one another. However, the cross-correlation behavior of the former is
much better than that of the latter in that the reflected signal waveforms
corresponding to using w. = 1 are almost uncorrelated with each other.

we = 0 and with w, = 1 are similar to one another. However,
the cross-correlation behavior of the former is much better
than that of the latter in that the reflected signal waveforms
corresponding to using w. = 1 are almost uncorrelated with
each other. This can be further verified from Fig. 6 in which
we provide the comparison of the normalized magnitudes of
the cross-correlation coefficients (as formulated in the second
term of the right hand side of (5)) for three targets of interest
at directions # = {—50°,0°,50°}, as functions of we.

In Fig. 7, we demonstrate the final antenna position vectors
suggested by the proposed algorithm for the two cases of
we = 0 and w, = 1. Finally, Fig. 5 demonstrates the computa-
tional cost of our proposed algorithm and that of proposed in
[19]. Note that our proposed algorithm significantly reduces
the computational cost of the ADMM-based method in [19] by
a factor of more than 100, making our algorithm particularly
suitable for real-time applications.

V. CONCLUSION

In this paper, the problem of jointly designing the probing
signal covariance matrix as well as the antenna positions to
approximate a given beampattern was studied. In order to
tackle the problem, we proposed a novel cyclic optimization
method based on the non-convex formulation of the problem.
In addition, we used a local optimization algorithm to tackle
the non-convex problem of designing antenna positions. Sev-
eral numerical examples were provided which demonstrates
the superiority of the proposed method over the existing
ADMM-based method in terms of accuracy and computational
complexity.
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Fig. 3. The transmit beampattern design for M = 15, N = 10 with and
without the cross-correlation suppression with one mainlobe at § = 0° with
a beam-width of 60°. Note that in both cases of w. = 0 and w. = 1 our
proposed method can accurately approximate the desired beampattern.
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Fig. 4. The transmit beampattern design for M = 20, N = 15 with
and without the cross-correlation suppression with five mainlobes at § =
{—60°,—30°,0°,30°,60°} with a beamwidth of 10°.
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Fig. 5. Comparison of the computational cost of the proposed algorithm and
that of the method in [19] for different number of grid points and that of
antennas. We consider M = 4 and N = 3 as initialization, and then linearly
scale M and N by the factor of 8 € {1,2,3,4}. The proposed algorithm
significantly outperforms the ADMM-based method proposed in [19] by a
factor of more than 100, resulting our algorithm particularly suitable for real-
time applications.
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Fig. 6. The comparison of the normalized magnitudes of the cross-correlation
coefficients (as formulated in the second term of the right hand side of (5))
for three targets of interest at directions § = {—50°,0°,50°}, as functions
of wc. Note that when w. is very small (close to zero), the first and third
reflected signals are highly correlated. On the other hand, for w. > 0.1 all
cross-correlation coefficients are approximately zero.
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Fig. 7. The antenna position s for M = 15, N = 10 with and without the
cross-correlation suppression. y-axis is used only for representation purposes.
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