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ABSTRACT
The lack of interpretability in current deep learning models
causes serious concerns as they are extensively used for var-
ious life-critical applications. Hence, it is of paramount im-
portance to develop interpretable deep learning models. In
this paper, we consider the problem of blind deconvolution
and propose a novel model-aware deep architecture that al-
lows for the recovery of both the blur kernel and the sharp
image from the blurred image. In particular, we propose the
Deep Unfolded Richardson-Lucy (Deep-URL) framework —
an interpretable deep-learning architecture that can be seen as
an amalgamation of classical estimation technique and deep
neural network, and consequently leads to improved perfor-
mance. Our numerical investigations demonstrate significant
improvement compared to state-of-the-art algorithms.

Index Terms— Blind deconvolution, model-aware deep
learning, machine learning, deep unfolding, non-convex opti-
mization

1. INTRODUCTION

In digital photography, motion blur is a common and long-
standing problem where the blurring is induced by the rela-
tive motion of the camera or the subject with respect to the
other [1]. In classical image processing, such a motion blur
is generally regarded as a motion kernel being applied on the
original sharp image through a linear operation, e.g., convo-
lution. Often in practice, however, neither the blur kernel nor
the original image is known a priori, and thus the task be-
comes to estimate both from the blurry input image. In im-
age processing, the term blind deconvolution is often used to
represent the task of image restoration without any explicit
knowledge of the impulse response function, also known as
the point-spread function (PSF) and the original sharp im-
age [1, 2]. The blurred image y is typically formulated as:

y = H � x+ n, (1)

where x and H are the unknown original clean image and
the blur kernel, respectively, n is the additive measurement
noise generally modeled as white Gaussian noise (AWGN)
with variance σ2, and � represents the 2D convolution oper-
ator. Hence, the task of blind deconvolution is to estimate a

sharp x and the corresponding H from an infinite set of pairs
(x,H) using the blurry image y, making it an ill-posed and
very challenging problem.

A judicious approach to such problems is to utilize some
prior knowledge about the statistics of the natural image
and/or motion kernels. There exists a multitude of algorithms
to efficiently estimate the image x and kernel H using prior
knowledge of the model [3–5]. A majority of them are based
on maximum-a-posterior (MAP) framework,

(x̂, Ĥ) = argmax
x,H

Pr {x,H | y},
= argmax

x,H
Pr {y | x,H}Pr {x}Pr {H}, (2)

where Pr {y | x,H} is the likelihood of the noisy output y
given a certain (x,H), that corresponds to the data fidelity
term, and Pr {x} and Pr {H} are the priors of the origi-
nal image and blur kernel, respectively. Note that, Eq. (2)
is correct under the assumption that the sharp original im-
age x and the blur kernel H are independent. These MAP-
based algorithms are often iterative in nature and usually rely
on the sparsity-inducing regularizers, either in gradient do-
main [5–7] or more generally in sparsifying transformation
domain [8]. However, the knowledge of the prior is not usu-
ally enough, for instance, Levin et al. [2] shows that MAP-
based methods may lead to a trivial solution of an impulse
kernel resulting in the same noisy image as output. By care-
fully designing the appropriate regularizer and selecting the
proper step size and learning rate, one may find a sharper im-
age. These parameters are, however, difficult to determine
analytically as they heavily depend on the noisy input image
itself, and thus do not admit any generalization.

Data-driven methods, on the other hand, make an attempt
to determine a non-linear mapping that deblurs the noisy im-
age by learning the appropriate parameter choices particular
to an underlying image dataset using deep neural networks
(DNN) [9,10]. Given the training dataset, one can use a DNN
either to extract features from the noisy image to estimate the
blur kernel [10] or directly learn the mapping to the sharp im-
age [11]. Although these methods achieve substantial perfor-
mances in certain practical scenarios, they often do not suc-
ceed in handling various complex and large-sized blur kernels
in blind deconvolution. The structure of the neural networks
is usually empirically determined and thus they often lack
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Fig. 1: Proposed Deep-URL architecture for model-aware blind de-
convolution. Given a blurred image y and initial estimates of the
clean image x0 and blurring kernel H0, the model updates xk and
Hk following Algorithm 1.

inherent interpretability. Recent works generate attribution
based maps to explain the networks decision, however, they
disregard the untapped potential of the model knowledge [12].
In order to enjoy the advantages of both model-based itera-
tive algorithms and data-driven learning strategies, one may
exploit the idea of deep unfolding [13, 14]. Especially, [13]
shows that propagating through a neural network is, in fact,
equivalent to implementing the iterative algorithm for a finite
number of times, and thus the trained network can be natu-
rally interpreted as a parameter optimized algorithm. In re-
cent years, deep unfolding networks have gained a significant
amount of attention in various branches of signal process-
ing [13, 15–18]. However, in the context of blind image de-
convolution, the extent of deep unfolding capabilities remains
largely unexplored. Recently Li et al. [19], performed motion
deblurring by means of unfolding an iterative algorithm that
relies on total-variation (TV) regularization prior in the image
gradient domain [20]. Although this approach performs bet-
ter than the state-of-the-art model-based and data-driven blind
deconvolution counterparts, the strict requirement of training
a network for a certain dataset makes the algorithm impracti-
cal for real-time usage: the algorithm requires a ground truth
dataset, to begin with. Additionally, in practice, motion ker-
nels are not pre-deterministic (e.g., in drone image process-
ing), and hence acquiring a labeled dataset is not possible for
a supervised learning scenario.

In this paper, we propose a novel technique to unfold
an iterative algorithm that estimates the latent clean image
and corresponding blur kernel on the fly — a zero-shot self-
supervised algorithm. In particular, we use the classical
Richardson-Lucy blind deconvolution algorithm [21] to con-
struct the network structure and iteratively estimate the clean
image and the kernel. We experimentally verify the perfor-
mance of our algorithm and compare it with [19] and other
iterative algorithms and recent neural network approaches.

2. PROBLEM FORMULATION

In this section, we lay the groundwork for our proposed
model-aware deep architecture for the problem of blind de-
convolution. To this end, we consider an extension of the

Richardson-Lucy (RL) algorithm as a baseline to design a
deep neural network such that each layer imitates the behav-
ior of one iteration of the RL algorithm.

Generally, the problem of blind deconvolution can be cast
as the following optimization problem:

min
x,H

‖y −H � x‖22 + λTV(x), (3)

where the first term represents the data fidelity term and λ
is the regularization coefficient for the total variation (TV)
regularization operated on the image x. The RL algorithm
seeks to recover the sharp image x and the blur kernel H
in an iterative manner as described in [21]. Starting from an
initial guess for the sharp image and the kernel (x0,H0), the
update steps for the image and the kernel at the k-th iteration
is given by,

Hk+1 =

([
y

xk �Hk

]
� xk†

)
�Hk, (4a)

xk+1 =

([
y

xk �Hk+1

]
�Hk+1†

)
� xk, (4b)

where � represents the Hadamard product and (·)† denotes
the flipped version of the vector/matrix argument.

3. BLIND DECONVOLUTION VIA DEEP-URL

In order to obtain a model-aware deep architecture we
slightly over parameterize the iterations of RL algorithm
(See Eq. (4a)-(4b)) and unfold them onto the layers of a deep
neural network. In particular, each layer corresponds to one
iteration of the baseline iterative algorithm. Namely, we fix
the total computational complexity of the RL algorithm by
fixing the total number of iterations as a DNN with L lay-
ers. Thus, by substituting the xk and Hk in Eq. (4a)-(4b)
with trainable parameters, we reformulate each subsequent
iterative operation as:

Hk+1 = σ

(
ReLU

([
y

ReLU(xk �W k
H)

]
� xk†

)
�W k

H

)
,

(5a)

xk+1 = σ

(
ReLU

([
y

ReLU(W k
x �Hk+1)

]
�Hk+1†

)
�W k

x

)
,

(5b)

where W k
x and W k

H are the weights for k-th layer. Fur-
thermore, σ(·) represents the Sigmoid activation function and
ReLU denotes the Rectifier Linear Unit. Note that there ex-
ist two implicit constraints on the recovered sharp image and
the kernel: (a) both x and H are non-negative and (b) each
element of x and H must meet a range constraint.Hence, in
order to ensure constraint (a), each convolution operation is
activated by a ReLU function, and in addition we use the Sig-
moid activation after each update step to satisfy constraint (b).

Let Υk = {W k
x ,W

k
H} denote the set of trainable param-

eters of layer k, and Υ = Υ1 ∪ Υ2 ∪ · · · ∪ ΥL. Using the
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iterative updates from Eq. (5a)-(5b), we formulate the training
of our proposed model-aware deep network: Deep Unfolded
Richardson Lucy (Deep-URL) architecture as follows,

min
Υ

L(xL �HL,y) + λTV(xL) (6)

where the loss function L(·) is the negative of the structural
similarity index (SSIM) [22] between the true blurred image
y and the reconstructed blurred image ŷ = xL �HL.

It is worth mentioning that the proposed deep architec-
ture in conjunction with the proposed learning method man-
ifests itself as a self-supervised learning process where the
degraded image y is the only information used for estima-
tion of the sharp image x∗ and the blurred kernel H∗. Fig. 1
illustrates the proposed Deep-URL architecture and the train-
ing process. Finally, Algorithm 1 summarizes the joint opti-
mization process for updating Υ. Note that, once the self-
supervised model is optimized for a given blur kernel, the
learned weights can be directly used for deblurring any image
blurred with the same kernel.

Algorithm 1 DEEP-URL
Input: y: blurred image, L: number of layers, N : number of

epochs
Output: H∗: estimated kernel, x∗: sharp image
Initialize: H0 ← U(0, 1); x0 ← U(0, 1)

1: for i = 1 to N do
2: for k = 0 to L− 1 do
3: Compute Hk+1 using Eq. (5a).
4: Compute xk+1 using Eq. (5b).
5: end for
6: Compute the gradients of Eq. (6) w.r.t. Υ.
7: Update Υ.
8: H0 ← HL;x0 ← xL

9: end for
10: H∗ = HL;x∗ = xL

4. EXPERIMENTS

In this section, we investigate the performance of the pro-
posed Deep-URL framework and compare it with several
other state-of-the-art methods in the context of blind deconvo-
lution. First, we compare the performance of Deep-URL with
the baseline RL algorithm using the standard MNIST hand-
written digit dataset [23]. Second, we use Levin dataset [2] to
compare Deep-URL with existing iterative and deep learning-
based blind deconvolution methods proposed in [10, 11, 19].
Optimization setup. The training of Deep-URL (Eq. (6))
is carried out using the RMSprop optimizer for 5000 epochs
by employing an adaptive learning rate scheme with an initial
learning rate of 0.1 and a decaying factor of 0.1 when reach-
ing 40% and 60% of the total number of epochs. In addition,
the TV regularization coefficient λ was set to 0.1 for all ex-
periments. All trainable parameters were initialized using a

Table 1: Evaluation metric scores averaged over 1000 MNIST im-
ages. Across all image quality metrics, Deep-URL (D-URL) outper-
forms the RL algorithm.

L = 2 L = 5
Metrics RL D-URL RL D-URL

PSNR(dB) 10.3919 18.2821 10.4742 19.7075
ISNR (dB) 0.0651 7.9554 0.0764 9.3096
SSIM 0.4453 0.7669 0.4484 0.8206
RMSE(×1e-3) 38.54 4.396 38.07 4.399

uniform distribution. We performed a batch-wise optimiza-
tion, with a batch size of 4, on images blurred using the same
kernel for enhancing the performance of Deep-URL.
Evaluation metrics. Inspired by [19], we use the following
metrics to evaluate the performance of our proposed method:
(1) Structural Similarity Index (SSIM), (2) Peak Signal-to-
Noise-Ratio (PSNR), (3) Improvement in Signal-to-Noise-
Ratio (ISNR) for the quality of the reconstructed image x∗,
and (4) Root-Mean-Square Error (RMSE) for comparing the
recovered blur kernel H∗ with the original H . In the sequel,
we use the term PSF and blur kernel interchangeably.

Fig. 2: The evaluation metric scores across all image and kernel for
different number of layers (L) show that the performance of Deep-
URL increases on increasing L as compared to the baseline RL al-
gorithm.

MNIST dataset results. For this experiment, we consider
the well-known MNIST dataset. We randomly draw 1000
sample images from the MNIST training dataset and use
the same motion kernels provided by [2]. Particularly, for
each image, we convolve the original image with a randomly
chosen aforementioned blur kernel to generate the degraded
image. Table 1 demonstrates the performances of the pro-
posed Deep-URL framework with L ∈ {2, 5} layers and
the original RL algorithm with the same number of itera-
tions. It is evident from Table 1 that the proposed method
significantly outperforms the baseline RL algorithm across
all evaluation metrics. Interestingly, Deep-URL achieves
better performance in terms of both recovering the original
image and the PSF even with only L = 2 layers—this is
presumably due to the hybrid model-based and data-driven
nature of the proposed method. Moreover, Deep-URL with
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(a) (b) (c) (d) (e) (f)

SSIM: 1.0 0.6809 [19] 0.7584 [10] 0.6082 [11] 0.5315 (RL) 0.9189 (Deep-URL)

Fig. 3: Qualitative results for a sample image from Levin dataset [2] taken from [19]. The SSIM score between the ground truth image
(row 1, a) and the reconstructed images using different iterative and deep learning based blind deconvolution methods (row 1, b-e) shows
the superior performance of Deep-URL (f). Comparing the inset images (green boxes in row 1), shows the effectiveness of Deep-URL in
retaining fine details of the image. Interestingly, the SSIM of [19] (row 1, b) is low since the image is slightly shifted as it fails to reconstruct
the blurring kernel correctly (Fig. 4, b)

(a) (b) (c) (d) (e)

Ground Truth [19] [10] RL Deep-URL

Fig. 4: Ground truth blur kernel (a) used to blur the image in Fig. 3a.
Deep-URL reconstructs the kernel with minimum shifts as compared
to other iterative and deep learning methods (b-d). Classical RL
algorithm completely fails and generates a noisy kernel (d). Note
that [11] does not predict the motion blur kernel and hence is not
included in the figure above.

L = 5 layers attains a very high average ISNR value for the
recovered image, which is 121× higher than that of the orig-
inal RL algorithm. Note that, the RMSE between the original
and the reconstructed PSF using the proposed method as-
sumes a 8.55× smaller value than that of the RL algorithm.
By comparing the evaluation performance of Deep-URL
for L ∈ {2, 5}, it is evident that increasing the number of
layers result in a much higher increase of scores across all
evaluation metrics as compared to the baseline RL algo-
rithm. Finally, from Fig. 2, we found that the classical RL
algorithm is sensitive to the number of iteration and the per-
formance fluctuates on a random set of 100 MNIST images.
However, the performance of Deep-URL always increases
as we increase the number of iterations i.e., the number of
layers.
Levin dataset results. For this experiment, we use the dataset
provided by [2] – a widely used benchmark dataset in several
deblurring works [5, 6, 19]. It comprises of 4 grayscale im-
ages and 8 motion blur kernels: a total of 32 motion blurred
images. Table 2 summarizes the performance of Deep-URL
in comparison with the baseline RL as well as the method-
ologies proposed in [10], [11] and [19] on the same dataset.
It can be observed from Table 2 that Deep-URL significantly
outperforms the baseline RL algorithm across all image and

kernel evaluation metrics. In contrast to other methods that
include a priori learning using training images, Deep-URL is
a self-deblurring framework and performs at par (PSNR) or
better (ISNR and SSIM) on the image quality evaluation met-
rics. Interestingly, an 1.8× increase can be observed in ISNR
using Deep-URL with just L = 5 when compared to [19]. In
regards to the reconstructed blur kernel, it was found that most
pixels did not converge to absolute zero and hence a higher
RMSE score was obtained in reconstructing the motion ker-
nel blindly. From Fig. 3, we observe Deep-URL reconstructs
smoother images with lesser artifacts as compared to other
state-of-the-art methods.

Table 2: Deep-URL (D-URL) outperforms RL algorithm (ran till 5
iterations) across all image quality and RMSE metrics. In contrast
to existing deblurring methods which learn from training images,
Deep-URL performs on par (PSNR) and better (ISNR and SSIM) in
reconstructing the clean image.

Metrics [19] [11] [10] RL
D-URL
(L = 2)

D-URL
(L = 5)

PSNR(dB) 27.15 24.51 23.18 19.42 24.85 27.12
ISNR (dB) 3.79 1.35 0.02 -2.98 5.36 6.95
SSIM 0.88 0.81 0.81 0.53 0.89 0.91
RMSE(×1e-3) 3.87 - - 10.10 8.08 7.10

5. CONCLUSION

In this work, we considered the problem of blind deconvo-
lution and proposed the Deep-URL framework—a model-
aware deep blind deconvolution architecture—by unfolding
the Richardson-Lucy algorithm (Sec. 3). Quantitative and
qualitative evaluations (Sec. 4) show Deep-URL achieves su-
perior performance than both its baseline RL algorithm and
several existing blind deconvolution techniques. In contrast
to other MAP-based frameworks, Deep-URL does not show
convergence to the trivial solution of an impulse like kernel.
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