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a b s t r a c t 

Controlling the radar beam-pattern by optimizing the transmit covariance matrix is a well-established 

approach for performance enhancement in multiple-input-multiple-output (MIMO) radars. In this paper, 

we investigate the joint optimization of the waveform covariance matrix and the antenna position vector 

for a MIMO radar system to approximate a given transmit beam-pattern, as well as to minimize the cross- 

correlation between the probing signals at a number of given target locations. We formulate this design 

task as a non-convex optimization problem and then propose a cyclic optimization approach to efficiently 

approximate its solution. We further propose a local binary search algorithm in order to efficiently design 

the corresponding antenna positions. We show that the proposed method can be extended to the more 

general case of approximating the given beam-pattern using a minimal number of antennas as well as 

optimizing their positions. Our numerical investigations demonstrate a great performance both in terms 

of accuracy and computational complexity, making the proposed framework a good candidate for usage 

in real-time radar waveform processing applications such as MIMO radar transmit beamforming for aerial 

drones that are in motion. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction and prior works 

Multiple-input-multiple-output (MIMO) radar refers to a unique 

adar architecture that employs multiple spatially distributed 

ransmitters and receivers— an emerging technology in the last 

wo decades, attracting a great deal of interest from researchers in 

adar signal processing community as well as industry [2–9] . Un- 

ike a conventional phased array radar, a MIMO transmitter can 

ransmit a set of arbitrary waveforms orthogonal to each other 

n order to increase the spatial diversity [5,10] . One way to ex- 

loit such diversity in MIMO systems is by transmitting orthogo- 

al waveforms, and the echo signals can then be re-assigned to the 

ingle transmitter. Thus, from an antenna array of M T transmitters 

nd M R receivers, a MIMO architecture results in a virtual array of 

 M elements with enlarged size of virtual aperture which pro- 
T R 

� This work was supported in part by U.S. National Science Foundation Grants 

CF-1704401 and ECCS-1809225 . Parts of this work have been presented at the 53rd 
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ovember 2019 [1] . 
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ides additional degrees of freedom to improve the spatial resolu- 

ion [11,12] , immunity to interference [13] , and an improved tar- 

et localization capability [14–17] . The advantages of MIMO radar 

ver traditional phased array radar has inspired researchers to ad- 

ress various associated waveform design problems. Among them, 

s the problem of maximizing the output signal-to-interference- 

lus-noise ratio (SINR) by jointly optimizing the probing signals 

nd the receive filter coefficients [18–20] . Moreover, the probing 

aveforms transmitted by a MIMO radar can be designed to ap- 

roximate a desired beam-pattern, and to further minimize the 

ross-correlation between the transmitted waveforms at a num- 

er of given target locations [21–24] . Here, not only the main fo- 

us of this design problem is to control the spatial distribution 

f the transmit power, but also to improve statistical performance 

f radar system. It is known that the said performance of MIMO 

adar depends heavily on the cross-correlation beampattern which 

s completely missing in the phased-array case [25,26] . 

An extensive body of work already exists on designing the co- 

ariance matrix of radar transmit waveforms in lieu of design- 

ng the waveforms directly; which leads to extra degrees of free- 

om in the design stage. For example, in [25] , the authors de- 

cribe a method to optimize the waveform covariance matrix to 

pproximate the desired beam-pattern and minimize the corre- 

ation sidelobes using semidefinite quadratic programming (SQP), 

https://doi.org/10.1016/j.sigpro.2021.107985
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Fig. 1. Geometry of a colocated MIMO radar with M grid points with inter-spacing 

d. Only N grid points can be used for antenna placement. 
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hile in [21] a cyclic algorithm (CA) is proposed to synthesize the 

onstant-modulus waveform matrix to approximate a desired co- 

ariance matrix. A closed-form covariance matrix design method 

s described in [27] to achieve the desired beam-pattern based on 

iscrete Fourier transform (DFT) coefficients and Toeplitz matrices. 

n extension of the DFT-based methods to a planar-antenna-array 

or constant-modulus waveforms design can be found in [28] and 

29] . Although the DFT-based techniques for matching the transmit 

eam-pattern benefit from a lower computational complexity, the 

erformance is not satisfactory for small number of antennas [30] . 

wo algorithms are described in [31] to synthesize the waveform 

ovariance matrix for a given desired beam-pattern. In the first al- 

orithm, the elements of a square-root matrix of the covariance 

atrix are parameterized using the coordinates of a hypersphere in 

rder to implicitly optimize the designed square matrix as a posi- 

ive semidefinite matrix in an iterative manner. In the second algo- 

ithm, the constraints and redundant information in the covariance 

atrix are exploited to find a closed-form solution, which although 

ay yield a ‘pseudo’-covariance matrix, the outcome is not guar- 

nteed to be positive semidefinite. For a further study on transmit 

eam-pattern synthesis approaches, we refer the interested readers 

o consult [32–37] , and the references therein. 

Note that all the aforementioned algorithms consider only a 

niform linear array (ULA) with half-wavelength inter-element 

pacing, while designing the covariance matrix of the probing 

ignals to match the given transmit beam-pattern. However, it 

as shown in [37] that the selection of the array position can 

ntroduce additional degrees of freedom for designing transmit 

eam-pattern. Namely, by carefully choosing the position of an- 

ennas, one can design the desired beam-pattern using much less 

umber of antennas. In other words, one can achieve a similar 

eam-pattern by carefully redistributing the available antennas in 

 wider transmit field which amounts to increased virtual aper- 

ure. As a result, a joint optimization of the covariance matrix and 

he antenna selection vector can achieve superior results compared 

ith existing methods using ULA with the same number of anten- 

as. In [37] , authors describe a method based on the Alternating 

irection Method of Multipliers (ADMM) [38] to design the an- 

enna selection vector. However, a convex relaxation is used to ap- 

roximate the solution which is not guaranteed to produce an op- 

imal outcome to the non-convex problem (that is NP-hard in gen- 

ral). 

Contributions: In this paper, we tackle the aforementioned prob- 

ems using an iterative greedy local search approach inspired by 

ynamic programming and evolutionary algorithms. 

In each iteration, a set of optimization parameter vectors is cho- 

en to be perturbed and the corresponding objective values are 

alculated. The best parameters are then selected to form the pop- 

lation for the next generation, and then the entire procedure is 

epeated until a stopping criteria based on the original objective 

unction is met. 

The main contributions of this paper can be described as fol- 

ows: 

• A novel cyclic algorithm is proposed in order to jointly design 

the covariance matrix of the transmit waveforms and antenna 

selection vector. The proposed method further allows for min- 

imizing the cross-correlation between the probing signals at a 

number of given target locations. 

• We design the antenna selection vector using a novel greedy 

search framework for binary variables. We show that by using 

the all-one vector as initialization, the proposed algorithm can 

provide a good approximate solution in a specific number of 

iterations. Our new framework may be of interest on its own 

as a general non-convex solver for waveform design in MIMO 

radar systems with practical constraints. 
2 
• We further provide an extension to the general antenna selec- 

tion scenario where the algorithm selects the minimum num- 

ber of antennas. 

To promote reproducible research, the codes for generating the 

esults presented are made publicly available along with this paper. 

Organization of the paper: The remainder of the paper is or- 

anized as follows. Sections 2 and 3 describe the general signal 

odel and problem formulation for jointly designing the covari- 

nce matrix of the probing signals and the antenna position vec- 

or. In Section 3.1 , we propose a novel cyclic optimization approach 

o tackle the aforementioned problem, while in Section 4 , we dis- 

uss the antenna selection strategy using an iterative greedy search 

lgorithm in detail. We extend the antenna selection problem to 

 more general case in Section 5 using a minimal number of an- 

ennas. Section 6 lays out several numerical examples for the pro- 

osed framework. Finally, Section 7 concludes the paper. 

Notation: We use bold-lowercase and bold-uppercase letters to 

epresent vectors and matrices, respectively. x i denotes the i th ele- 

ent of the vector x . The superscripts (·) ∗, (·) T , and (·) H represent

he conjugate, the transpose, and the Hermitian operators, respec- 

ively. 1 M 

and 0 M 

are the all-one and all-zero vectors of length M, 

espectively. B 

M 

N 
= { x | ‖ x ‖ 1 = N, x ∈ { 0 , 1 } M , N ≤ M} is the set of

ll binary vectors with size M and N non-zero elements and S M 

s the set of all real symmetric matrices of size M × M. The sets of

 × N real, real non-negative and complex matrices are denoted by 

, R + , and C, respectively. The � 1 -norm is represented by ‖ · ‖ 1 .
 (·) is the (element-wise) real-part of the complex argument. Fi- 

ally, � denotes the Hadamard product of matrices. 

. Signal model 

We consider the problem of selecting N transmit antennas 

laced on a linear array positions with M(≥ N) grid points with 

qual grid spacing d, in order to achieve a desired beam-pattern 

s depicted in Fig. 1 . A generalized version of the problem requires 

hoosing the minimum number of antenna positions out of M grid 

oints for the similar purpose. In the subsequent sections we con- 

ider both scenarios in a detailed manner. Let us consider a bi- 

ary antenna position vector to represent the antenna configura- 

ion, viz. 

p = [ p 1 , p 2 , . . . , p M 

] T , 

p m 

∈ { 0 , 1 } , m ∈ { 1 , . . . , M} , (1) 

here p m 

= 1 indicates that the m th grid point is chosen for an-

enna placement; otherwise, we have p m 

= 0 . 

We consider a MIMO radar system transmitting distinct wave- 

orms from each transmission antenna to achieve a desirable 

eam-pattern. Let s m 

(l) , with m ∈ { 1 , . . . , M} and l ∈ { 1 , . . . , L } , de-

ote the transmit signal from m th antenna, where L is the signal 

ength in discrete-time. 
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Assuming that the transmit waveforms are narrow-band and 

hat the propagation is non-dispersive, the baseband waveform at 

he desired target location θ can be expressed as [5] 

M ∑ 

 =1 

e − j 2 π
λ

md sin (θ ) s m 

(l) � a 

H (θ ) s (l) , l ∈ { 1 , . . . , L } , (2) 

here λ is the wavelength of the transmitted signal, and s (l) = 

 s 1 (l) , s 2 (l ) , . . . , s M 

(l )] T is the space-time transmit waveform with

ength M, and a (θ ) is the steering vector of the ULA at the direction

, defined as 

 (θ ) = [1 , e j 
2 π
λ

d sin (θ ) , . . . , e j 
2 π
λ

(M−1) d sin (θ ) ] T . (3) 

We seek to select N antennas out of M grid point to design 

he desired beam-pattern. Let p ∈ B 

M 

N 
denote the antenna selection 

ector. The corresponding waveform at the target location at the 

irection θ with respect to (w.r.t.) the ULA is then given by, 

 (l) = ( p � a (θ )) H s (l) , l ∈ { 1 , . . . , L } . (4) 

onsequently, the power produced by the waveforms at a generic 

irection θ can be written as 

 (θ ) = E 

{| x (l) | 2 }
= ( p � a (θ )) H E 

{
s (l) s H (l) 

}
( p � a (θ )) 

= p 

T R �

(
a (θ ) a 

H (θ ) 
)∗

p , (5) 

here 

 = E 

{
s (l) s H (l) 

}
(6) 

s the time-averaged covariance matrix of the transmit waveforms 

 s (l) } . As usual in the literature, we refer to the spatial power

pectrum defined in (5) , as the transmit beam-pattern . Note that, in 

 similar manner, one can define the cross-correlation terms be- 

ween the probing signals at locations θ and θ̄ as 

 ̄(θ, θ̄ ) � p 

T � 

{ 

R �

(
a (θ ) a 

H ( ̄θ ) 
)∗} 

p . (7) 

ur goal is to jointly design the antenna selection vector p and 

he covariance matrix R of the transmitted waveforms in order 

o generate the desired beam-pattern while reducing the cross- 

orrelation terms. Once R has been determined, a signal sequence 

 (l) can be designed that has R as its covariance matrix [4,25,39] . 

. Problem formulation 

The probing signals transmitted by the MIMO radar system can 

e designed to enable the system to approximate a desired trans- 

it beam-pattern as well as to minimize the cross-correlation of 

he signals backscattered from various targets. Let φ(θ ) denote the 

esired transmit beam-pattern, and { θk } K k =1 
be a grid of points that 

overs the radial sectors of interest. We assume that the said grid 

omprises of points which are good approximations of the loca- 

ions of ˜ K targets of interest that we wish to probe at locations 

 θk } ˜ K 
k =1 

. In addition, we assume that some partial information re- 

arding the target positions are available at hand, i.e. , we possess 

ome initial estimates { ̃  θk } ˜ K 
k =1 

of { θk } ˜ K 
k =1 

. In practice, one can ob-

ain { ̃  θk } ˜ K 
k =1 

using the Capon spatial spectrum and the generalized 

ikelihood ratio test (GLRT) function for target localization. For ex- 

mple, we form the desired beam-pattern by using the dominant 

eak locations of the GLRT pseudo-spectrum, denoted by { ̃  θk } ˆ K 
k =1 

ith 

ˆ K being the resulting estimate of ˜ K , as follows: 

(θ ) = 

{
1 , θ ∈ [ ̃  θk − � 

2 
, ˜ θk + 

� 
2 

] , k ∈ { 1 , . . . , ˆ K } , 
0 , otherwise , 

(8) 

here � is the chosen beam-width for each target ( � should be 

reater than the expected error in { ̃  θ } ); see [5] . 
k 

3 
Our goal is to design R such that the transmit beam-pattern 

 (θ ) , approximates the desired beam-pattern φ(θ ) over the ra- 

ial sectors of interest in a least squares (LS) sense, and more- 

ver, such that the contribution from all cross-correlation terms 

 ̄(θ, θ̄ ) ( for θ 	 = θ̄ ) , are minimized (again, in an LS sense) over the

et of possible target locations { ̃  θk } ˜ K 
k =1 

. Formally, we make use of 

he following cost function that incorporates the aforementioned 

riteria as follows [5] : 

( p , R , α) = 

1 

K 

K ∑ 

k =1 

w k 

∣∣p 

T R �

(
a (θk ) a 

H (θk ) 
)∗

p − αφ(θk ) 
∣∣2 

+ 

2 ω c 

˜ K ( ̃  K − 1) 

˜ K −1 ∑ 

p=1 

˜ K ∑ 

q = p+1 

∣∣∣p 

T � 

{ 

R �

(
a ( ̃  θp ) a 

H ( ̃  θq ) 
)∗} 

p 

∣∣∣2 

(9) 

here α > 0 is a scaling factor to be optimized, ω k ≥ 0 is the

eight factor for the k th grid point (for k = 1 , . . . , K), and ω c ≥ 0

s the weight factor for the cross-correlation terms. Note that we 

ntroduce α as a design parameter in order to achieve the desired 

ransmit beam-pattern that approximates an appropriately scaled 

ersion of φ(θ ) to take into account different transmit energy al- 

ocations. 

In the sequel, we formulate the problem of designing beam- 

attern with low cross-correlation for a MIMO radar system as a 

onstrained optimization problem and further impose proper con- 

traints for designing R and p . First, one should impose the con- 

traint that the designed matrix R must be positive semi-definite 

ince it is a covariance matrix. Next, under a uniform elemental 

ower constraint, all the diagonal elements of R must attain the 

ame value as all antennas are required to transmit uniform power. 

ence, the feasible region for the desired transmit covariance ma- 

rix can be compactly expressed as, 

 
 0 , (10a) 

 mm 

= 

c 

M 

, for m = 1 , . . . , M, (10b) 

ith given c > 0 , and R mm 

denoting the m th diagonal element of

 . In the case of designing unimodular sequences, one can simply 

et c = 1 . 

Secondly, due to the fact that we are placing only N antennas 

n M(≥ N) grid points to achieve the desired beam-pattern, we fur- 

her impose the constraint that the binary antenna selecting vector 

p should contain N non-zero elements. More precisely, we aim to 

esign p according to the following constraints, 

 p ‖ 1 = N, (11a) 

p m 

= { 0 , 1 } , for m = 1 , . . . , M, (11b) 

r, equivalently p ∈ B 

M 

N . Therefore, the overall transmit covariance 

ptimization problem can be formulated as 

in 

p , R ,α
J( p , R , α) (12a) 

s . t . R 
 0 , (12b) 

 mm 

= 

c 

M 

, for m = 1 , . . . , M, (12c) 

 p ‖ 1 = N, (12d) 

p m 

= { 0 , 1 } , for m = 1 , . . . , M, (12e) 

> 0 . (12f) 
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It is easy to verify that the optimization problem in (12) can be 

ategorized as a mixed Boolean-nonconvex problem, especially due 

o the constraints imposed on p , the likes of which is very difficult 

nd computationally expensive to solve. In the next subsection, we 

ropose an efficient and novel cyclic optimization approach based 

n semi-definite programming and a greedy search algorithm to 

ackle the non-convexity of the said problem in (12). 

.1. Cyclic optimization algorithm 

Hereafter, we address the problem of designing the desired co- 

ariance matrix R , the scaling factor α, and the corresponding an- 

enna selection vector p according to the objective function J and 

y proposing an alternating optimization approach to tackle the 

roblem of (12). Specifically, the minimization of J( p , R , α) in (12) 

an be tackled via employing a cyclic optimization approach with 

espect to the design variables ( R , α) and p . 

• Optimization of R and α: 

For a fixed p , the minimization problem in (12) with respect to 

 R , α) can be recast as 

in 

R ,α
J( p , R , α) (13a) 

s . t . R 
 0 , (13b) 

 mm 

= 

c 

M 

, for m = 1 , . . . , M, (13c) 

> 0 . (13d) 

Interestingly, it was shown in [25] that the above minimization 

roblem with respect to design variables ( R , α) is convex and can 

e reformulated as a semi-definite program (SDP), which can then 

e efficiently solved using numerical methods ( e.g. , interior point 

ethod [40] ). 

• Optimization of p : 

On the other hand, for fixed ( R , α) the optimization problem 

f (12) with respect to the antenna selection vector p can be ex- 

ressed as 

in 

p 
J( p , R , α) (14a) 

s . t . p ∈ B 

M 

N , (14b) 

here M and N denote the total number of grid points and the to- 

al number of antennas we are restricted to choose, in order to 

orm the desired beam-pattern, respectively. Note that the con- 

traint set B 

M 

N 
is not convex due to the (discrete) Boolean con- 

traint of p ∈ { 0 , 1 } imposed on the antenna selection vector. Put

ifferently, we are interested in minimizing the objective function 

over a subset of vertices of a hypercube of dimension M, which is 

epresented by B 

M 

N 
. We tackle this problem using a greedy search 

lgorithm which is discussed in Section 4 in detailed manner. 

Finally, as mentioned earlier, the cyclic optimization method al- 

ernates between the following optimization problems at each cy- 

le: 

R 

(t) 
, α(t) 

)
= arg min 

R ,α
J( p 

(t−1) , R , α) (15) 

s . t . R 
 0 , 

R mm 

= 

c 

M 

, 

for m = 1 , . . . , M, 

α > 0 , 
a

4 
nd 

p 

(t+1) = arg min 

p 
J( p , R 

(t) 
, α(t) ) (16) 

s . t . p ∈ B 

M 

N , 

here t denotes the iteration index of the cyclic optimization 

ethod. 

. The proposed antenna position design technique 

In this section, we develop a heuristic optimization approach 

nspired by the dynamic programming and genetic algorithms (a 

pecial case of evolutionary optimization technique [41] ) equipped 

ith a simple local search to tackle the non-convexity of (14). 

ote that the objective function J( p , R , α) is quartic with respect 

o the vector p , and thus, it is deemed extremely difficult to solve. 

he ref [37] proposes one approach (14) based on a relaxation of 

he Boolean constraint ( e.g. , via the linear relaxation of 0 ≤ p ≤ 1 ), 

hich yields a suboptimal solution in expense of heavy computa- 

ion. 

In this paper, we resort to a greedy search algorithm which can 

olve the exact problem in (14) in an efficient manner. 

Especially we mimic the process of natural selection for solving 

n optimization process by iteratively improving the generated set 

f feasible solutions. The fitness of each feasible solution is usually 

overned by an objective function. Then, according to a predefined 

riteria, the algorithm maintains the best subset of feasible solu- 

ions at each iteration to generate better solution individuals ac- 

ordingly. Here in each generation, we produce the set of feasible 

olutions and select the best individual according to a greedy pol- 

cy, however by design, the particular choice of policy allows for 

hrinking the cardinality of feasible set in each generation. 

In the following, we go through the main ingredients of the 

roposed method in order to design the antenna position vector 

p . 

.1. Generation of feasible solutions set 

As mentioned earlier that our search space for a solution is a 

ubset of vertices of an M-dimensional hypercube represented by 

 

M 

N 
. Hence we undertake a deterministic strategy for the genera- 

ion of feasible solutions set. 

Note that the binary vector p of length M represents a hyper- 

ube with 2 M vertices. Given the most fitted solution (parent so- 

ution) at iteration k, e.g. , p 

(k ) , we generate a new set of feasible

candidate) solutions ( i.e. , offspring of the parent solution) p 

(k +1) 
CS 

s follows: 

p 

(k +1) 
CS 

= 

{
p | H 

(
p , p 

(k ) 
)

= 1 , ‖ p ‖ 1 < ‖ p 

(k ) ‖ 1 

}
, (17) 

here H( x , y ) denotes the Hamming distance between the two 

ectors, and is defined to be the number of positions i such that 

 i 	 = y i , where the subscript i denotes the i th element of the corre-

ponding vector. In other words, given a parent solution p 

(k ) , the 

ew set of candidate solutions (CS) is generated as the set of vec- 

ors which only differs from p 

(k ) in one bit (with one less non- 

ero element only). Then each candidate solution is mutated us- 

ng a predefined probability ( prob_mut ), meaning one randomly 

elected bit (using uniform sampling) is toggled with the said 

robability. The purpose of mutation is to introduce diversity into 

he candidate solution set. Mutation operators are used in an at- 

empt to avoid local minima by preventing the active bits of can- 

idates (chromosomes) from becoming too similar to each other, 

hus slowing or even stopping convergence to the global optimum. 

his reasoning also leads to avoid only taking the fittest of the can- 

idates in generating the next generation, but rather selecting a 

andom (or semi-random) set with a weighting toward those that 

re fitter [41] . 



A. Bose, S. Khobahi and M. Soltanalian Signal Processing 183 (2021) 107985 

s

s

A

s

1

1

1

1

4

d

o

g

o

m

p

u

n

N

c

c

A

4

p  

e

t

t

t

a

c

Algorithm 3 For updating seen_children . 
1: procedure UpdateSeenChildren ( seen_children , children ) 
2: for each child in children do 

3: if child is not in seen_children then 

4: seen_children .push ( child ) 
5: end if 

6: end for 

7: return seen_children 
8: end procedure 

Algorithm 4 For choosing the best p using greedy search 

algorithm (The procedure UpdateSeenChildren is described in 

Algorithm 3 ). 

Require: R , α, total number of antennas N, total number of grid 

points M, prob_mut 
Ensure: p ← 1 M 

, seen_children ← ∅ , flag ← 1 

1: while flag do 

2: children ← GenerateChildren ( p , seen_children , 
prob_mut ) 

3: p ← BestChild ( children ) 
4: seen_children ← UpdateSeenChildren ( seen_children , 

children ) 
5: if ‖ p ‖ 1 = N then 

6: flag ← 0 

7: end if 

8: end while 

9: return p 
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Hence, at each iteration the cardinality of the new candidate 

olution is upper bounded by 

∣∣∣p 

(k +1) 
CS 

∣∣∣ ≤ ‖ p 

(k ) ‖ 1 . This procedure is 

ummarized in Algorithm 1 . 

lgorithm 1 For generating children set of p which are not in 

een_children using mutation. 

1: procedure GenerateChildren ( p , seen_children , prob_mut ) 
2: children .push ( p ) 

3: for i = 1 , 2 , . . . , len ( p ) do 

4: if p i = 1 then 

5: child ← Toggle i th bit of p 

6: if rand(1) ≤ prob_mute then 

7: child ← Toggle uniformly selected one bit of 

child with probability prob_mut 
8: end if 

9: if child is not in children and seen_children then 

0: children .push ( child ) 
11: end if 

2: end if 

3: end for 

14: return children 
5: end procedure 

.2. Selection of the fittest solution 

The goal of selection procedure is to propagate the fittest can- 

idate solution, i.e. , the one with the highest fitness value, or in 

ther words lowest objective value, to have a higher probability of 

enerating new offspring or CS for the next iteration (generation) 

f the algorithm. There exist several stochastic and deterministic 

ethods in the literature for the selection procedure, and in this 

aper, we consider a deterministic approach. For fixed ( R , α) , let 

s denote the objective function (9) as J( p ) . 

Having the current CS p 

(k ) 
CS 

at hand, we select the fittest solution 

p 

(k ) to be considered for generating new candidate solutions at the 

ext stage as follows: 

p 

(k ) = arg min 

p ∈ p (k ) 
CS 

J( p ) . (18) 

ext, p 

(k ) is used as the seed for generating new CS in the 

rossover procedure for the next stage of the algorithm. This pro- 

edure is summarized in Algorithm 2 . 

lgorithm 2 For choosing the best child of p . 

1: procedure BestChild ( children ) 
2: Calculate the functional values of J( child , R , α) in (9) for 

each child in children 
3: return the child for which the functional value is minimum 

4: end procedure 

.3. Stopping criteria 

Once the selection procedure selects a vector p 

(k ) as its out- 

ut such that p 

(k ) ∈ B 

M 

N or equivalently ‖ p 

(k ) ‖ 1 = N, then one can

asily argue that a suboptimal solution is obtained. Note that 

p 

(k ) ∈ B 

M 

N 
implies p 

(k −1) ∈ B 

M 

N+1 
. Hence, one can conclude that if 

p 

(k ) ∈ B 

M 

N 
, then p 

(k ) is a local optimal point in a 1-Hamming dis- 

ance neighborhood of p 

(k +1) such that ‖ p 

(k ) ‖ 1 < ‖ p 

(k −1) ‖ 1 , and 

hat p 

(k −1) ∈ B 

M 

N+1 
. Moreover, the cardinality of the search space in 

he 1-Hamming distance local search in (18) is at most ‖ p 

(k −1) ‖ 1 
nd as a result the search space is reduced in each generation. The 

orresponding search process is summarized in Algorithm 4 . 
5 
The above greedy search approach can be best manifested via 

onsidering a toy example. Assume M = 3 , N = 1 , and the ini-

ial antenna position vector p 

(0) = 1 M 

. Fig. 2 illustrates the iter- 

tions of the proposed greedy search algorithm, where the red 

ertices denote the parent solution (output of the selection pro- 

edure), yellow vertices correspond to the candidate solutions 

p CS , and the blue vertices are the selected solution for the next 

teration. At the first iteration, the candidate solutions p 

(1) 
CS 

= 

 [0 , 1 , 1] , [1 , 0 , 1] , [1 , 1 , 0] } ⊆ B 

3 
2 
, and each member of p 

(1) 
CS 

is also

n a 1-Hamming distance of p 

(0) . Next, we introduce mutation to 

ach of the candidate solutions according to a predefined mutation 

robability. Generally, such probability is kept low ( < 0 . 5 ) to intro-

uce a controlled diversity so that only a small number of candi- 

ates are mutated but not all. Let us assume, during the mutation 

rocess, only one candidate: [1,0,1] is mutated to [1,0,0], and thus 

he new candidate set becomes: ˆ p 

(1) 
CS = { [0 , 1 , 1] , [1 , 0 , 0] , [1 , 1 , 0] }

ext, during the selection procedure, let us assume that the ver- 

ex [0,1,1] is chosen as the fittest solution and then used to gener- 

te offspring (candidate solutions), e.g. p 

(1) = [0 , 1 , 1] . The new CS

enerated from p 

(1) is the set p 

(2) 
CS 

= { [0 , 0 , 1] , [0 , 1 , 0] } ⊆ B 

3 
1 
. Once

gain, we apply mutation to all the candidates, however, assume 

hat due to the smallness of the predefined mutation probability, 

one of the candidates are mutated in this iteration. The fittest so- 

ution is then p 

(2) = [0 , 0 , 1] and due to the fact that it is a mem-

er of the desired set B 

3 
1 
, the algorithm stops. Next, the antenna 

osition vector p 

(2) is used to design the covariance matrix R . 

As it was discussed earlier, we consider the alternating (cyclic) 

ptimization approach to solve the joint optimization of covariance 

atrix and the antenna position vector. Namely, after performing 

he above greedy search technique for obtaining the solution to 

14) at the tth iteration, i.e. obtaining the antenna selection vector 

p 

(t) , we fix p = p 

(t) and optimize the objective function with re- 

pect to the design variables ( R , α) according to the method de- 

cribed in Section 3.1 . 
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Fig. 2. Illustration of the iterations of the proposed greedy search algorithm, where the red vertices denote the parent solution (output of the selection procedure), yellow 

vertices correspond to the candidate solutions p CS , and the blue vertices denote the selected solution for the next iteration. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Table 1 

The proposed joint optimization method. 

Step 0 : Initialize the antenna position vector p (0) = 1 M , the complex covariance matrix R (0) ∈ C N × N , and the 

scaling factor α(0) ∈ R + , and the outer loop index t = 1 . 

Step 1 : Solve the convex program of (15) using the procedure described in Section 3.1 and obtain 
(
R (t) 

, α(t) 
)
. 

Step 2 : Employ the proposed greedy search approach described in Section 4 and solve the antenna position design 

program of (16) to obtain the vector p (t+1) . 

Step 3 : Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied. 
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Finally, the proposed cyclic optimization approach is summa- 

ized in Table 1 . 

. Extension to general antenna selection scenario 

So far, we have discussed the joint optimization of transmitted 

ignal covariance matrix and the antenna position while restricted 

o placing N antennas into M grid points in an optimal manner. 

owever, the same proposed greedy search algorithm can be ex- 

ended to a more general scenario in which we aim to choose the 

inimum number of antennas N min for placing in M grid points. 

amely, in the general antenna selection scenario, we consider the 

ptimization of the signal covariance matrix to form the desired 

eam-pattern, by letting the algorithm choose the best placement 

ositions while using the minimum number of antennas. For this 

eneral scenario, we consider the following relaxed optimization 

roblem, 

min 

p , R ,α
J( p , R , α) + ρ( | ‖ p ‖ 1 − N | ) (19) 

s . t . R 
 0 , 

R mm 

= 

c 

M 

, for m = 1 , . . . , M, 

p m 

= { 0 , 1 } , for m = 1 , . . . , M, 

α > 0 , 

here ρ > 0 denotes the penalty parameter. Note that a lower 

alue of ρ relaxes the solution p to have less (than N) number of 

ctive antennas by encouraging the total number of non-zero ele- 

ents ‖ p ‖ 1 of the solution to go far from N. Conversely, a larger

alue of ρ keeps the total number of non-zero elements of the so- 

ution near N. Hence, depending on the application, one can choose 

 lower weight for the total number of active antennas via varying 

he penalty factor ρ . Also, N in (19) can be interpreted and chosen 

ccordingly as an approximation of the number of antennas one 

an afford to use. 

Let J 2 ( p , R , α) � J( p , R , α) + ρ( | ‖ p ‖ 1 − N | ) denote the aug-

ented objective function in (19) . Then, with a slight modification, 

he same cyclic optimization approach described in Section 3.1 can 

e employed to solve it. Note that the extra term in J 2 ( p , R , α) only

epends on p , and hence the optimization of J with respect to the 
2 

6 
esign variables ( R , α) remains unchanged and is the same as the 

rocedure described in Section 3.1 . In the previous scenario, we 

ere restricted to a solution p such that it satisfies p ∈ B 

M 

N . How- 

ver, we have no such restriction in the generalized scenario but 

nly to have p ∈ { 0 , 1 } M and instead we are interested in choos- 

ng the minimum number of antennas while optimizing their po- 

itions. 

In order to optimize the new augmented objective function J 2 
ith respect to the vector p , we only need to change the stop- 

ing criteria and the fitness function. In this general case, the fit- 

ess function is considered to be J 2 ( p , R , α) and the correspond- 

ng stopping criteria for the greedy search approach can be de- 

cribed as follows. As it was discussed earlier in Section 4 , start- 

ng with the initialization p 

(0) = 1 M 

, at each iteration of the pro- 

osed search algorithm, the parent node p 

(k ) ∈ B 

M 

N−k 
is a local opti- 

al point in a 1-Hamming distance neighborhood of p 

(k −1) . Hence, 

 heuristic proper stopping criteria can be assumed when the fol- 

owing condition is satisfied at the k th inner iteration of the search 

rocess: 

 

(
p 

(k ) , p 

(k −1) 
)

= 0 . (20) 

n other words, the above criteria implies that the solution p 

(k ) is 

 1-Hamming distance optimal point for its parent p 

(k −1) as well 

s the newly generated candidate solutions p 

(k +1) 
CS 

. 

. Numerical examples 

In this section, we provide several examples of numerical sim- 

lations in order to assess the performance of our proposed al- 

orithm. In the following experiments we assume a colocated 

arrow-band MIMO radar with a linear array with M = 15 grid 

oints and half-wavelength inter-grid interval i.e. d = λ/ 2 . The 

ange of angle is (−90 ◦, 90 ◦) with 1 ◦ resolution. We set the 

eights for the k th angular direction as w k = 1 , for k = 1 , . . . , K.

ote that the optimization problem with respect to the variables 

 R , α) is carried out using the convex optimization toolbox CVX 

42] . Furthermore, we consider the mutation probability as 0.1. 

In Fig. 3 , we consider a design scenario where initial direction 

f arrival (DoA) information about ˜ K = 3 targets with unit complex 

mplitudes, and approximately located at angles {−50 ◦, 0 ◦, 50 ◦} is 
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Fig. 3. The transmit beam-pattern design for M = 15 , N = 10 with and without the 

cross-correlation suppression with three mainlobes at ˜ θ = {−50 ◦, 0 ◦, 50 ◦} with a 

beam-width � = 20 ◦ . It is noticeable that our algorithm outperforms [37] . 

Fig. 4. The comparison of the normalized magnitudes of the cross-correlation co- 

efficients for three targets of interest at directions {−50 ◦, 0 ◦, 50 ◦} as functions of 

ω c . 
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Fig. 5. The transmit beam-pattern design for M = 15 , N = 10 with and without the 

cross-correlation suppression with one mainlobe at ˜ θ = 0 ◦ with a beam-width of 

� = 60 ◦ . It can be noted that our algorithm outperforms [37] . 

Fig. 6. The transmit beam-pattern design for M = 20 , N = 15 with and without the 

cross-correlation suppression with five mainlobes at ˜ θ = {−60 ◦, −30 ◦, 0 ◦, 30 ◦, 60 ◦} 
with a beam-width of � = 10 ◦ . Full array represents the 15 antenna elements 

tightly placed in all 15 grid points. 
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vailable through the Capon or GLRT method. Hence, we desire to 

esign a symmetric beam-pattern with three directions of inter- 

st: ˜ θ1 = −50 ◦, ˜ θ2 = 0 ◦, and 

˜ θ3 = 50 ◦, respectively and the beam-

attern of width � = 20 ◦ and thus the given transmit pattern is 

(θ ) = 

{
1 , θ ∈ [ ̃  θk − � 

2 
, ˜ θk + 

� 
2 

] , k = 1 , 2 , 3 , 

0 , otherwise . 

Herein, we compare the resulting beam-pattern with the de- 

ired one for the two cases of ω c = 1 (with cross-correlation) 

nd ω c = 0 (without cross-correlation). Note that the designed 

eam-patterns obtained with and without considering the cross- 

orrelation term are similar to one another. However, the cross- 

orrelation behavior of the former is much better than that of the 

atter in that the probing signals corresponding to ω c = 1 , are al-

ost uncorrelated with each other. This can be further verified 

rom Fig. 4 , where we provided the comparison of the normalized 

agnitudes of the cross-correlation coefficients (as formulated in 

he second term of the right hand side of (9) ) for the same three

argets of interest at directions ˜ θ = {−50 ◦, 0 ◦, 50 ◦} , as functions of
7 
 c . It is evident from Fig. 4 that when ω c is very small (close to

ero), the first and third reflected signals are highly correlated. 

n the other hand, for ω c > 0 . 1 all cross-correlation coefficients 

re approximately zero. The proposed algorithm outperforms the 

ethod in [37] in terms of accuracy (measured in MSE), and addi- 

ionally, is capable of designing waveform covariance matrices with 

ow cross-correlation [43,44] . 

In Fig. 5 , we further consider the design scenario of approx- 

mating the beam-patterns with one mainlobe at ˜ θ = 0 ◦, with a 

idth of 60 ◦, with and without cross-correlation suppression. Note 

hat in both cases of ω c = 0 and ω c = 1 , our proposed method

an accurately approximate the desired beam-pattern and provide 

 better beam-pattern than that of [37] . 

Fig. 6 shows the beam-pattern with five mainlobes at ˜ θ = 

−60 ◦, −30 ◦, 0 ◦, 30 ◦, 60 ◦} with a shorter beam-width of 10 ◦ for

 = 20 and N = 15 . We compare the beam-pattern approximated 

y our framework ( i.e. , with the configuration of 15 antennas 
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Fig. 7. The antenna positions for M = 15 , N = 10 with and without the correlation 

suppression. 

Fig. 8. The generated M × M covariance matrix for M = 15 , N = 10 with cross- 

correlation suppression. 
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Fig. 9. Comparison of the computational cost of our proposed algorithm and that 

of proposed in [37] for different number of grid points and that of antennas. We 

consider M = 4 and N = 3 as initialization, and then linearly scale M and N by the 

factor of β = { 1 , 2 , 3 , 4 } . 
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laced in an array of 20 grid points) with that generated by a full 

inear array i.e. 15 antenna elements tightly placed in all 15 grid 

oints. It can be clearly seen from the Fig. 6 that the proposed 

ethod approximates the beam-pattern better than that of full ar- 

ay. One can further notice that the transmitted power values are 

lmost the same in all mainlobe despite being farther away from 

he central mainlobe, as compared to the full array. 

In Fig. 7 , we demonstrate the final antenna position vectors 

uggested by the proposed algorithm for the scenario considered 

n Fig. 6 for the two cases of ω c = 0 and ω c = 1 . It is interesting

o note that the effective antenna aperture of the array is M = 15 ,

hich can be safely reached by selecting only N = 10 antennas. The 

orresponding beam-patterns are depicted in Fig. 3 . 

In addition, Fig. 8 shows the final M × M covariance matrix of 

he transmit signals, which can be used to design the transmitted 

equence following specific requirements. It can be readily shown 

hat the generated matrix is symmetric and its eigenvalues are all 

on-negative ( i.e. , R is a positive semidefinite matrix). It is inter- 

sting to note that the structure of the final covariance matrix is 

n agreement with the final antenna position vector, as reflected in 

he corresponding rows and columns of the rejected grid points, 

hich are all zeros. 
8 
In Fig. 9 , the comparison of the computational cost of the pro- 

osed algorithm and that of the method in [37] for different num- 

er of grid points and antennas are shown. For this experiment, we 

onsider M = 4 and N = 3 as initialization, and then linearly scale 

and N by the factor of β ∈ { 1 , 2 , 3 , 4 } . The proposed algorithm

ignificantly reduces the computational cost of the ADMM-based 

ethod in [37] by a factor of more than 200 . To give it a perspec-

ive, [37] takes ∼ 4500 s to design the beam-pattern for M = 15 

nd N = 10 , in around 20 outer iterations (on average) in a stan-

ard PC with 8-core processor and 16 GB memory. Whereas, our 

roposed method finishes the same task in just 17 s using 3 outer 

terations in the same standard PC, making the proposed frame- 

ork particularly suitable for real-time applications. 

Furthermore, Fig. 10 illustrates the beam-pattern design for the 

eneralized case described in Section 5 . In the generalized case, we 

elax the constraints of (12d) ( i.e. , ‖ p ‖ 1 = N), and allow the total

umber of active antennas to deviate from N (which can be chosen 

epending on the applications) via changing the penalty variable 

. For this simulation, we set M = 20 and N = 15 and provide the

btained beam-patterns and the final arrangement and total num- 

er of antennas suggested by the proposed algorithm, in Fig. 10 (a) 

nd (b), respectively for different values of ρ . It is interesting to 

ote that for ρ = 0 . 1 , the proposed algorithm successfully returns 

n arrangement with 15 antennas as requested in the design pa- 

ameter. However, for ρ = 0 . 01 , the algorithm suggests an arrange- 

ent with 10 antennas, which remains unchanged for ρ < 0 . 01 , 

uggesting N = 10 is the minimum number of antenna that can be 

tilized. Further note that the resulting beam-pattern for the two 

ases are similar in the mainlobes, although having different num- 

er of antennas. 

In the next experiment, we further examine the convergence 

erformance of the proposed algorithm. Especially, we perform a 

onte-Carlo simulation ( n = 10 0 0 ) with fixed parameters used in 

he experiment shown in Fig. 3 . In each run, we initialize the 

aveform covariance matrix R with a randomly generated PSD ma- 

rix while keeping all the other parameters unchanged. It is inter- 

sting to observe that, in each experiment, the designed beam pat- 

ern converges to the one shown in Fig. 11 for all n = 10 0 0 . Fur-

hermore, in each case, the optimized antenna positions are also 

he same as shown in Fig. 11 which implies that the proposed al- 

orithm has satisfactory convergence performance. 
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Fig. 10. The (a) beam-pattern and, (b) final arrangements and total number of selected antennas for M = 20 grid points and penalty parameter ρ = { 0 . 1 , 0 . 01 } . 

Fig. 11. Convergence of the proposed algorithm: the approximated transmit beam- 

pattern and the optimized antenna positions (inset). 
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. Conclusion 

In this paper, the problem of jointly designing the probing sig- 

al covariance matrix as well as the antenna positions to approx- 

mate a given beam-pattern was studied. In order to tackle the 

roblem, a novel cyclic (alternating) optimization method based on 

he non-convex formulation of the problem, was proposed. In ad- 

ition, we used a greedy local search algorithm to tackle the non- 

onvex problem of designing antenna position. Several numerical 

xamples were provided which demonstrates the superiority of the 

roposed method over the existing methods in terms of accuracy 

nd computational efficiency. 
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ppendix A. Time-complexity analysis of the proposed method 

The computational complexity of the proposed method in 

able 1 for a problem size of (M, N) ( i.e. , N antennas are to be

elected from M locations) can be obtained through the following 

teps: 

1. Evaluation of 
(
R 

(t) , α(t) 
)

is a convex SDP problem and has a 

polynomial worst-case complexity [45] . 

2. Evaluation of p 

(t) involves: 

(a) generation of p CS , and calculation of J( p ) for each member 

of p CS . 

(b) choosing the best p . 

 careful investigation of the optimization step for p reveals that 

t requires only (M − N) inner-iterations (see Step 2 above). Note 

hat the generation of p CS and choosing the best p (Step 2 above) 

inearly depend on the cardinality of the set p CS , and thus, can 

e achieved in linear time-complexity. Namely, assuming | p CS | = l, 

he problem of finding p 

∗ ∈ arg min p CS has a complexity of O ( l ) . 

or the k th inner-iteration, let us denote the complexity of the cal- 

ulations corresponding to the Step 2(a) above as a function of the 
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ardinality of p CS , i.e. C(l) , where l = M − k . Furthermore, the calcu-

ation of J( p ) for each p has a constant cost c. Hence, the total cost

f optimization with respect to the vector p at each outer-iteration 

dmits the following upper-bound: 

 tot = 

M−N ∑ 

k =1 

c · (M − k ) + C(M − k ) 

≤
M−N ∑ 

k =1 

cM + C(M) 

= (M − N)(cM) + (M − N) C(M) 

≤ cM 

2 + M C(M ) . (21) 

hus, the worst-case complexity is O 

(
M 

2 
)

(note that C(M) corre- 

ponds to a complexity of O ( M ) ). 
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