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• The problem of reconstruction of a matrix 
from an incomplete set of samples or 
measurements, particularly known as 
matrix completion , arises in a large area of 
applications including recommendation 
schemes, sensor network localization, 
collaborative filtering, quantum state 
tomography [1-2] etc.

• Matrix recovery based on comparisons 
between ratings is a very natural approach 
in recommendation scenarios as users are 
more comfortable with comparing 
products than giving exact ratings [3].

2. Problem Formulation

However, suppose we only have access to
some comparison information:

𝑐 1 , 𝑝 2 , 𝑝 1 , {𝑐 2 , 𝑝 1 , 𝑝(3)}, 

{𝑐 2 , 𝑝 1 , 𝑝(4)} , {𝑐 3 , 𝑝 4 , 𝑝(3)}

We can formulate the comparison matrix 𝑨:

A = 
1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1

and, the one-bit comparison data 𝝀 to be:

𝝀 = 𝑠𝑔𝑛 𝑨 ⋅ 𝑣𝑒𝑐 𝑴 = −1 1 1 −1 𝑇

We define 𝛀 to be the diagonalized matrix of
𝝀; i.e.

𝛀 = Diag(𝝀)

Hence the problem of recovering the ranking
matrix 𝑴 will reduce to:

Goal: To identify the low-rank matrix 𝑴,
given the matrices 𝑨 and 𝛀.

Thus, the matrix recovery problem can be
rewritten as:

min
𝑴,𝑿, 𝒀

𝑴 − 𝑿𝒀𝑇 𝐹
2

s. t.
𝛀 ⋅ 𝐀 ⋅ 𝑣𝑒𝑐 𝐌 ≥ 0
0 < 𝑣𝑒𝑐 𝑴 < 𝜂

which can be efficiently tackled by resorting
to a cyclic minimization algorithm. The
optimization problem with respect to the
variable 𝑴 is essentially a convex linearly-
constrained quadratic program (QP), leading
to a low-cost solution. Moreover, the
minimizers 𝑿 and 𝒀 can be obtained
analytically.

𝑴−𝑿𝒀𝑇 𝐹
2

= 𝑣𝑒𝑐(𝑴) − 𝒀⨂𝑰 𝑣𝑒𝑐(𝑿) 𝐹
2

which yields the optimal 𝑿 and 𝒀 to be:

𝑣𝑒𝑐 𝑿 = 𝒀⨂𝑰 † 𝑣𝑒𝑐 𝑴
𝑣𝑒𝑐 𝒀 = 𝑿⨂𝑰 † 𝑣𝑒𝑐(𝑴𝑇)

We first consider the reconstruction of a
rank-3 target rating matrix 𝑴 with 𝑐 =
20 and 𝑝 = 30. The matrix 𝑴 is generated
randomly and normalized.
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Consider a 𝑐 × 𝑝 rating matrix 𝑴 with
𝑴 𝑖,𝑗 = 𝑚𝑖,𝑗 with rank 𝑟 and 𝑐 and 𝑝

denoting the number of users and the
number of items, respectively. We do not
observe the matrix 𝑴. However, we observe

a set of triplets: {𝑐 𝑖 , 𝑝 𝑗 , 𝑝(𝑘)} which simply

illustrates a comparison: 𝑐 𝑖 th user prefers

𝑝 𝑗 th item over 𝑝 𝑘 th item.

We then form the one-bit observation matrix
𝑨 ∈ −1, 0, 1 𝑑×𝑐𝑝 with each of its row being
a comparison.

For example:

𝑴 =
3 4 2 3
4 5 3 2
3 5 5 4

𝑣𝑒𝑐 𝑴 = 3, 4, 3 ⋮ 4, 5, 5 ⋮ 2, 3, 5 ⋮ 3, 2, 4 𝑇
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Fig. 1: Normalized Frobenius error of the low-rank matrix
recovery vs. the iteration number for different random
initializations with (𝑐; 𝑝; 𝑟) = (15; 20; 3)

Fig. 2: An example of low-rank matrix recovery based on one-
bit comparison measurements with (𝑐; 𝑝; 𝑟) = (15; 20; 3)
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𝑴 = 𝒙1𝒚1
𝑇 + 𝒙2𝒚2

𝑇+ …+𝒙𝑟 𝒚𝑟
𝑇

where 𝒙𝑘 ∈ ℝ𝑐 and 𝒚𝑘 ∈ ℝ𝑝 . We assume
that the entries of {𝒙𝑘} and {𝒚𝑘} are stored
via a 𝑞 -bit quantization system with a
predefined set of elements and a cardinality
of 2𝑞. As 𝑟(𝑐 + 𝑝)𝑞 bits are required to store
a large rating matrix in general, we need at
least 𝑟(𝑐 + 𝑝)𝑞 meaningful comparisons to
recover 𝑴. The bottleneck is:

𝑟𝑞 ≤
𝑐𝑝 − 1

𝑐 + 𝑝

The low-rank matrix recovery algorithms will
be much more effective if an initial good
estimate of the matrix rank is available. Any
generic row 𝒎 of 𝑴 is given as a linear
combination of at most 𝑟 vectors {𝒎𝑘}.

𝒎 = ෍

𝑘=1

𝑟

𝛼𝑘𝒎𝑘

The data provide comparisons of different
entries of 𝒎 which can finally (or at the best
performance of the system) lead to an
ordering of the elements in 𝒎. The number
of such orderings is bounded as 𝒪(𝑛2𝑟)
which is considerably smaller than 𝑛!. Such a
bound will help with determining a lower
bound for 𝑟.

We expect the rating matrix to have a small
rank which is a very common practice in
collaborative filtering for practical reasons,
we can formulate 𝑴 as 𝑴 = 𝑿𝒀𝑻 and
perform the alternating optimization over
two tall matrices 𝑿 and 𝒀 of size 𝑐 × 𝑟 and
𝑝 × 𝑟, respectively.
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