Joint Optimization of Waveform Covariance Matrix and Antenna Selection for MIMO Radar

Arindam Bose
Shahin Khobahi
Mojtaba Soltanalian

November 05, 2019

OIC WaveOPT Lab

Asilomar Conference on Signals, Systems, and Computers

Table of contents

(1) Background
(2) Formulation
(3) Algorithm

4 Discussion

MIMO and active sensing

Its been over 10 years since the benefits of MIMO has been recognized

- Virtual spatial channels, an adaptive degree of freedom.
- Broadening of the transmitter beam pattern.
- Rapid detection and mitigation of strong clutter discretes.
- Jointly optimize both the transmit and receive DoF.

(A) Transmission mode

(B) Backscatter mode

Jointly exploit Tx-Rx DoF

Couple of ways...

- Maximize SICR by jointly designing the probing signal and the receive filter coefficients.
- Control distribution of transmit power by approximating a desired beampattern by optimizing the transmit covariance matrix.

Jointly exploit Tx-Rx DoF

Couple of ways...

- Maximize SICR by jointly designing the probing signal and the receive filter coefficients.
- Control distribution of transmit power by approximating a desired beampattern by optimizing the transmit covariance matrix.

Why transmit covariance?

- Extra degrees of freedom.
- Acts as an oracle for waveform design problem.
- Need low cross-correlation sidelobe? No problem.

The traditional case

Uniform linear array (ULA)

What we are up to

The spatial diversity

- Antenna position and/or alignment introduces additional degrees of freedom.
- Smart antenna position designing can save a lot of resources ${ }^{[1]}$.

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018

NULA

Let's call it non-uniform linear array (NULA)

When do we require it?

- Adaptive beamforming for autonomous vehicle.
- Aerial beamforming using drones.
- Localization applications.

Objective

The goal is to...

- Jointly design
- the covariance matrix
- antenna selection vector
- Match a desired beam pattern
- Minimize cross-correlation sidelobe.

Preliminaries

Antenna selection vector:

$$
\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{M}\right]^{T}, p_{m} \in\{0,1\}
$$

Steering vector:

$$
\boldsymbol{a}(\theta)=\left[1, e^{j \frac{2 \pi}{\lambda} d \sin \theta}, \cdots, e^{j \frac{2 \pi}{\lambda}(M-1) d \sin \theta}\right]^{T}
$$

Space-time transmit waveform:

$$
\boldsymbol{s}(I)=\left[s_{1}(I), s_{2}(I), \cdots, s_{M}(I)\right]^{T}
$$

The baseband waveform at azimuth location θ :

$$
\begin{aligned}
\text { ULA }: x(I) & =\boldsymbol{a}(\theta)^{H} \boldsymbol{s}(I) \\
\text { NULA }: x(I) & =(\boldsymbol{p} \odot \boldsymbol{a}(\theta))^{H} \boldsymbol{s}(I), \quad I \in\{1, \cdots, L\} .
\end{aligned}
$$

Preliminaries (contd.)

The power produced by the waveform at θ

$$
\begin{aligned}
P(\theta) & =\mathbb{E}\left\{|x(I)|^{2}\right\} \\
& =(\boldsymbol{p} \odot a(\theta))^{H} \mathbb{E}\left\{\boldsymbol{s}(I) \boldsymbol{s}^{H}(I)\right\}(\boldsymbol{p} \odot \boldsymbol{a}(\theta)) \\
& =\boldsymbol{p}^{T} \operatorname{Re}\left\{\boldsymbol{R} \odot\left(\boldsymbol{a}(\theta) \mathbf{a}^{H}(\theta)\right)^{*}\right\} \boldsymbol{p},
\end{aligned}
$$

where

$$
\boldsymbol{R}=\mathbb{E}\left\{\boldsymbol{s}(I) \boldsymbol{s}^{H}(I)\right\}
$$

Preliminaries (contd.)

The power produced by the waveform at θ

$$
\begin{aligned}
P(\theta) & =\mathbb{E}\left\{|x(I)|^{2}\right\} \\
& =(\boldsymbol{p} \odot \boldsymbol{a}(\theta))^{H} \mathbb{E}\left\{\boldsymbol{s}(I) \boldsymbol{s}^{H}(I)\right\}(\boldsymbol{p} \odot \boldsymbol{a}(\theta)) \\
& =\boldsymbol{p}^{T} \operatorname{Re}\left\{\boldsymbol{R} \odot\left(\boldsymbol{a}(\theta) \mathbf{a}^{H}(\theta)\right)^{*}\right\} \boldsymbol{p},
\end{aligned}
$$

where

$$
\boldsymbol{R}=\mathbb{E}\left\{\boldsymbol{s}(I) \boldsymbol{s}^{H}(I)\right\}
$$

and the cross-correlation terms between θ and $\bar{\theta}$

$$
\bar{P}(\theta, \bar{\theta}) \triangleq \boldsymbol{p}^{T} \operatorname{Re}\left\{\boldsymbol{R} \odot\left(\boldsymbol{a}(\theta) \boldsymbol{a}^{H}(\bar{\theta})\right)^{*}\right\} \boldsymbol{p}
$$

Problem formulation

The desired beampattern $d(\theta)$
Assume some partial information regarding the target positions $\left\{\hat{\theta}_{k}\right\}_{k=1}^{\hat{K}}$ are known.

$$
d(\theta)= \begin{cases}1, & \theta \in\left[\hat{\theta}_{k}-\frac{\Delta}{2}, \hat{\theta}_{k}+\frac{\Delta}{2}\right], \quad k \in\{1, \cdots, \hat{K}\} \\ 0, & \text { otherwise }\end{cases}
$$

$\hat{\theta}=\left[-50^{\circ}, 0^{\circ}, 50^{\circ}\right]$
$\triangle=20^{\circ}$

The objective function

$$
\begin{aligned}
J(\boldsymbol{p}, \boldsymbol{R}, \alpha) & =\underbrace{\frac{1}{K} \sum_{k=1}^{K} w_{k}\left|\boldsymbol{p}^{T} \operatorname{Re}\left\{\boldsymbol{R} \odot\left(\boldsymbol{a}\left(\theta_{k}\right) \boldsymbol{a}^{H}\left(\theta_{k}\right)\right)^{*}\right\} \boldsymbol{p}-\alpha d\left(\theta_{k}\right)\right|^{2}}_{\text {beampattern matching term }} \\
& +\underbrace{\frac{2 \omega_{c}}{\hat{K}(\hat{K}-1)} \sum_{p=1}^{\hat{K}-1} \sum_{q=p+1}^{\hat{K}}\left|\boldsymbol{p}^{T} \operatorname{Re}\left\{\boldsymbol{R} \odot\left(\boldsymbol{a}\left(\hat{\theta}_{p}\right) \boldsymbol{a}^{H}\left(\hat{\theta}_{q}\right)\right)^{*}\right\} \boldsymbol{p}\right|^{2}}_{\text {cross-correlation term }}
\end{aligned}
$$

Problem formulation (contd.)

The optimization formulation

$$
\begin{aligned}
\min _{R, \boldsymbol{p}, \alpha} & J(\boldsymbol{R}, \boldsymbol{p}, \alpha) \\
\text { s.t. } & \boldsymbol{R} \succeq 0, \\
& R_{m m}=\frac{c}{M}, \quad \text { for } m=1, \cdots, M, \\
& \|\boldsymbol{p}\|_{1}=N, \\
& p_{m}=\{0,1\}, \quad \text { for } m=1, \cdots, M, \\
& \alpha>0 .
\end{aligned}
$$

Optimization of \boldsymbol{R} and α

$$
\begin{gathered}
\left(\boldsymbol{R}^{(t)}, \alpha^{(t)}\right)=\arg \min _{\boldsymbol{R}, \alpha} J\left(\boldsymbol{p}^{(t-1)}, \boldsymbol{R}, \alpha\right) \\
\text { s.t. } \boldsymbol{R} \succeq \mathbf{0} \\
R_{m m}=\frac{c}{M}, \text { for } m=1, \cdots, M \\
\alpha>0
\end{gathered}
$$

- Can be formulated as a constrained convex quadratic program.
- Any convex optimization toolbox e.g. CVX for Matlab, CVXPY, CVXOPT for Python can be used.

Optimization of \boldsymbol{p}

$$
\begin{array}{rl}
\boldsymbol{p}^{(t+1)}=\arg \min _{\boldsymbol{p}} & J\left(\boldsymbol{p}, \boldsymbol{R}^{(t)}, \alpha^{(t)}\right) \\
\text { s.t. } & \|\boldsymbol{p}\|_{1}=N \\
& \boldsymbol{p} \in\{0,1\}^{M}
\end{array}
$$

- Binary optimization problem (NP hard).

Optimization of \boldsymbol{p}

$$
\begin{array}{rl}
\boldsymbol{p}^{(t+1)}=\arg \min _{\boldsymbol{p}} & J\left(\boldsymbol{p}, \boldsymbol{R}^{(t)}, \alpha^{(t)}\right) \\
\text { s.t. } & \|\boldsymbol{p}\|_{1}=N \\
& \boldsymbol{p} \in\{0,1\}^{M}
\end{array}
$$

- Binary optimization problem (NP hard).
- Does convex relaxation work?
- Relax p into $[0,1]$, optimize for \boldsymbol{p}, then map it back to $\{0,1\}^{M}$ using hard thresholding.
- No exact solution.
- The solution is not always consistent.
- Search on real number makes the search space too big to handle.

Optimization of \boldsymbol{p}

$$
\begin{array}{rl}
\boldsymbol{p}^{(t+1)}=\arg \min _{\boldsymbol{p}} & J\left(\boldsymbol{p}, \boldsymbol{R}^{(t)}, \alpha^{(t)}\right) \\
\text { s.t. } & \|\boldsymbol{p}\|_{1}=N \\
& \boldsymbol{p} \in\{0,1\}^{M}
\end{array}
$$

- Binary optimization problem (NP hard).
- Does convex relaxation work?
- Relax p into $[0,1]$, optimize for \boldsymbol{p}, then map it back to $\{0,1\}^{M}$ using hard thresholding.
- No exact solution.
- The solution is not always consistent.
- Search on real number makes the search space too big to handle.
- Need sophisticated tool to properly handle it.

Optimization of \boldsymbol{p} (contd.)

- We propose a tool inspired from dynamic programming and evolutionary algorithm.

Optimization of \boldsymbol{p} (contd.)

- We propose a tool inspired from dynamic programming and evolutionary algorithm.
- For a given (\boldsymbol{R}, α), the solution of $J(\boldsymbol{p}): \boldsymbol{p}$ is a binary vector of length M with N non-zero elements.

Optimization of \boldsymbol{p} (contd.)

- We propose a tool inspired from dynamic programming and evolutionary algorithm.
- For a given (\boldsymbol{R}, α), the solution of $J(\boldsymbol{p}): \boldsymbol{p}$ is a binary vector of length M with N non-zero elements.
- In other words, our search space is a subset of vertices of a hypercube in an M-dimensional space.

Optimization of \boldsymbol{p} (contd.)

- We propose a tool inspired from dynamic programming and evolutionary algorithm.
- For a given (\boldsymbol{R}, α), the solution of $J(\boldsymbol{p}): \boldsymbol{p}$ is a binary vector of length M with N non-zero elements.
- In other words, our search space is a subset of vertices of a hypercube in an M-dimensional space.
- Given the solution $\boldsymbol{p}^{(k)}$ (parent solution), a new set of candidate solutions $\boldsymbol{p}_{\mathrm{CS}}^{(k+1)}$ is generated as:

$$
\boldsymbol{p}_{\mathrm{CS}}^{(k+1)}=\left\{\boldsymbol{p} \mid H\left(\boldsymbol{p}, \boldsymbol{p}^{(k)}\right)=1,\|\boldsymbol{p}\|_{1}<\left\|\boldsymbol{p}^{(k)}\right\|_{1}\right\} .
$$

Optimization of \boldsymbol{p} (contd.)

red vertex $\quad \Rightarrow$ the parent solution, yellow vertices \Rightarrow the candidate solutions $\boldsymbol{p}_{\mathrm{CS}}$,
blue vertex $\quad \Rightarrow$ the selected solution for the next iteration.

Optimization of \boldsymbol{p} (contd.)

red vertex $\quad \Rightarrow$ the parent solution,
yellow vertices \Rightarrow the candidate solutions $\boldsymbol{p}_{\mathrm{CS}}$,
blue vertex $\quad \Rightarrow$ the selected solution for the next iteration.

- The cardinality of the new candidate solution is upper bounded by $\left|\boldsymbol{p}_{\mathrm{CS}}^{(k+1)}\right| \leq\left\|\boldsymbol{p}^{(k)}\right\|_{1}$.
- Select and propagate the best candidate solution:

$$
\boldsymbol{p}^{(k)}=\arg \min _{\boldsymbol{p} \in \boldsymbol{p}_{\mathrm{CS}}^{(k)}} J(\boldsymbol{p}) .
$$

Table: The Proposed Joint Optimization Method

Step 0: Initialize the antenna position vector $\boldsymbol{p}^{(0)}=\mathbf{1}_{M}$, the complex covariance matrix $\boldsymbol{R}^{(0)} \in \mathbb{C}^{N \times N}$, and the scaling factor $\alpha^{(0)} \in \mathbb{R}_{+}$, and the outer loop index $t=1$.

Step 1: Solve the convex program for \boldsymbol{R}, α and obtain $\left(\boldsymbol{R}^{(t)}, \alpha^{(t)}\right)$.
Step 2: Employ the proposed binary optimization approach for \boldsymbol{p} to obtain the vector $\boldsymbol{p}^{(t+1)}$.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied, e.g. $H\left(\boldsymbol{p}^{(t)}, \boldsymbol{p}^{(t-1)}\right)=0$.

Numerical examples

Experimental setup I:

$M=15, N=10, \hat{\theta}=\left\{-50^{\circ}, 0^{\circ}, 50^{\circ}\right\}, \Delta=20^{\circ}$

Figure: The transmit beampattern design
[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018

Numerical examples

Experimental setup I:

$M=15, N=10, \hat{\theta}=\left\{-50^{\circ}, 0^{\circ}, 50^{\circ}\right\}, \Delta=20^{\circ}$

Figure: Normalized crosscorrelation coefficients
[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018

Numerical examples

Experimental setup I:

$M=15, N=10, \hat{\theta}=\left\{-50^{\circ}, 0^{\circ}, 50^{\circ}\right\}, \Delta=20^{\circ}$

Figure: Final antenna positions
[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018

Numerical examples (contd.)

Experimental setup II:

$$
M=15, N=10, \hat{\theta}=\left\{0^{\circ}\right\}, \Delta=60^{\circ}
$$

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018

Numerical examples (contd.)

Experimental setup III:

$$
M=20, N=15, \hat{\theta}=\left\{-60^{\circ},-30^{\circ}, 0^{\circ}, 30^{\circ}, 60^{\circ}\right\}, \Delta=10^{\circ}
$$

Numerical examples (contd.)

Computational cost

We consider $M=4$ and $N=3$ as initialization, and then linearly scale M and N by the factor of $\beta \in\{1,2,3,4\}$.

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018

Summary

- We jointly design the probing signal covariance matrix as well as the antenna positions to approximate a given beampattern while minimizing the cross-correlation sidelobe.
- We propose a binary optimization framework based on dynamic programming which is realizable in polynomial time.
- The algorithm is highly parallelizable and scalable.

Thank you and
 Questions?

