Background 00000000 Formulation 000 Algorithm 00000 Discussion 000000

Joint Optimization of Waveform Covariance Matrix and Antenna Selection for MIMO Radar

Arindam Bose Shahin Khobahi Mojtaba Soltanalian

November 05, 2019

UIC WaveOPT Lab

Asilomar Conference on Signals, Systems, and Computers

Background	Formulation	Algorithm	Discussion
0000000	000	00000	000000
Table of con	tents		

Background	Formulation	Algorithm	Discussion
●0000000	000	00000	000000
MIMO and active	sensing		

Its been over 10 years since the benefits of MIMO has been recognized

- Virtual spatial channels, an adaptive degree of freedom.
- Broadening of the transmitter beam pattern.
- Rapid detection and mitigation of strong clutter discretes.
- Jointly optimize both the transmit and receive DoF.

Background	Formulation	Algorithm	Discussion
0●000000	000	00000	000000
Jointly explo	it Tx-Rx DoF		

Couple of ways...

• Maximize SICR by jointly designing the probing signal and the receive filter coefficients.

 Control distribution of transmit power by approximating a desired beampattern by optimizing the transmit covariance matrix.

Background	Formulation	Algorithm	Discussion
0●000000	000	00000	000000
Jointly exploit	: Tx-Rx DoF		

Couple of ways...

- Maximize SICR by jointly designing the probing signal and the receive filter coefficients.
- Control distribution of transmit power by approximating a desired beampattern by optimizing the transmit covariance matrix.

Why transmit covariance?

- Extra degrees of freedom.
- Acts as an oracle for waveform design problem.
- Need low cross-correlation sidelobe? No problem.

Background	Formulation	Algorithm	Discussion
00●00000	000	00000	000000
The traditional ca	ase		

Uniform linear array (ULA)

Background	Formulation	Algorithm	Discussion
0000000	000	00000	000000
What we are up	to		

The spatial diversity

- Antenna position and/or alignment introduces additional degrees of freedom.
- Smart antenna position designing can save a lot of resources^[1].

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018 \equiv 0.906 6/24

Background	Formulation	Algorithm	Discussion
0000●000	000	00000	000000
NULA			

Let's call it non-uniform linear array (NULA)

When do we require it?

- Adaptive beamforming for autonomous vehicle.
- Aerial beamforming using drones.
- Localization applications.

Background	
00000000	

Formulatic

Algorithm 00000 Discussion 000000

Objective

The goal is to...

- Jointly design
 - the covariance matrix
 - antenna selection vector
- Match a desired beam pattern
- Minimize cross-correlation sidelobe.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background	Formulation	Algorithm	Discussion
000000●0	000	00000	000000
Preliminaries			

Antenna selection vector:

$$\boldsymbol{p} = [p_1, p_2, \cdots, p_M]^T, p_m \in \{0, 1\}$$

Steering vector:

$$\boldsymbol{a}(\theta) = [1, e^{j\frac{2\pi}{\lambda}d\sin\theta}, \cdots, e^{j\frac{2\pi}{\lambda}(M-1)d\sin\theta}]^T$$

Space-time transmit waveform:

$$s(l) = [s_1(l), s_2(l), \cdots, s_M(l)]^T$$

The baseband waveform at azimuth location θ :

ULA:
$$x(l) = \mathbf{a}(\theta)^{H} \mathbf{s}(l)$$

NULA: $x(l) = (\mathbf{p} \odot \mathbf{a}(\theta))^{H} \mathbf{s}(l), \quad l \in \{1, \dots, L\}.$

Background	Formulation	Algorithm	Discussion
0000000●	000	00000	000000
Preliminaries ((contd.)		

The power produced by the waveform at $\boldsymbol{\theta}$

$$P(\theta) = \mathbb{E}\{|x(l)|^2\}$$

= $(\boldsymbol{p} \odot \boldsymbol{a}(\theta))^H \mathbb{E}\{\boldsymbol{s}(l)\boldsymbol{s}^H(l)\}(\boldsymbol{p} \odot \boldsymbol{a}(\theta))$
= $\boldsymbol{p}^T \operatorname{Re}\left\{\boldsymbol{R} \odot \left(\boldsymbol{a}(\theta)\boldsymbol{a}^H(\theta)\right)^*\right\}\boldsymbol{p},$

where

$$\boldsymbol{R} = \mathbb{E}\left\{\boldsymbol{s}(l)\boldsymbol{s}^{H}(l)\right\},$$

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク へ で 10/24

Background	Formulation	Algorithm	Discussion
0000000●	000	00000	000000
Preliminaries ((contd.)		

The power produced by the waveform at $\boldsymbol{\theta}$

$$P(\theta) = \mathbb{E}\{|x(l)|^2\}$$

= $(\boldsymbol{p} \odot \boldsymbol{a}(\theta))^H \mathbb{E}\{\boldsymbol{s}(l)\boldsymbol{s}^H(l)\}(\boldsymbol{p} \odot \boldsymbol{a}(\theta))$
= $\boldsymbol{p}^T \operatorname{Re}\left\{\boldsymbol{R} \odot \left(\boldsymbol{a}(\theta)\boldsymbol{a}^H(\theta)\right)^*\right\}\boldsymbol{p},$

where

$$\boldsymbol{R} = \mathbb{E}\left\{\boldsymbol{s}(l)\boldsymbol{s}^{H}(l)
ight\},$$

and the cross-correlation terms between θ and $\bar{\theta}$

$$\bar{P}(\theta, \bar{\theta}) \triangleq \boldsymbol{p}^T \operatorname{Re}\left\{ \boldsymbol{R} \odot \left(\boldsymbol{a}(\theta) \boldsymbol{a}^H(\bar{\theta}) \right)^*
ight\} \boldsymbol{p}.$$

Background	Formulation	Algorithm	Discussion
00000000	●00	00000	000000
Problem formula	tion		

The desired beampattern $d(\theta)$

Assume some partial information regarding the target positions $\{\hat{\theta}_k\}_{k=1}^{\hat{K}}$ are known.

$$d(\theta) = \begin{cases} 1, & \theta \in [\hat{\theta}_k - \frac{\triangle}{2}, \hat{\theta}_k + \frac{\triangle}{2}], & k \in \{1, \cdots, \hat{K}\}, \\ 0, & \text{otherwise}, \end{cases}$$

$$\hat{ heta} = [-50^\circ, 0^\circ, 50^\circ] \ riangle = 20^\circ$$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background	Formulation	Algorithm	Discussion
00000000	○●○	00000	000000
The objectiv	ve function		

$$J(\boldsymbol{p}, \boldsymbol{R}, \alpha) = \underbrace{\frac{1}{K} \sum_{k=1}^{K} w_k \left| \boldsymbol{p}^T \operatorname{Re} \left\{ \boldsymbol{R} \odot \left(\boldsymbol{a}(\theta_k) \boldsymbol{a}^H(\theta_k) \right)^* \right\} \boldsymbol{p} - \alpha d(\theta_k) \right|^2}_{\text{beampattern matching term}} + \underbrace{\frac{2\omega_c}{\hat{K}(\hat{K} - 1)} \sum_{p=1}^{\hat{K} - 1} \sum_{q=p+1}^{\hat{K}} \left| \boldsymbol{p}^T \operatorname{Re} \left\{ \boldsymbol{R} \odot \left(\boldsymbol{a}(\hat{\theta}_p) \boldsymbol{a}^H(\hat{\theta}_q) \right)^* \right\} \boldsymbol{p} \right|^2}_{\text{beampattern matching term}}$$

cross-correlation term

< □ ▷ < @ ▷ < 토 ▷ < 토 ▷ E の Q ^(C) 12/24

Background	Formulation	Algorithm	Discussion
00000000	00●	00000	000000
Problem for	mulation (contd.)		

The optimization formulation

$$\min_{\boldsymbol{R},\boldsymbol{p},\alpha} \quad J(\boldsymbol{R},\boldsymbol{p},\alpha)$$
s.t. $\boldsymbol{R} \succeq \boldsymbol{0},$

$$R_{mm} = \frac{c}{M}, \text{ for } m = 1, \cdots, M,$$

$$\|\boldsymbol{p}\|_{1} = N,$$

$$p_{m} = \{0,1\}, \text{ for } m = 1, \cdots, M,$$

$$\alpha > 0.$$

(中) (문) (문) (문) 문) (13/24)

Background	Formulation	Algorithm	Discussion
00000000	000	●0000	000000
Optimization of	R and α		

$$\begin{pmatrix} \boldsymbol{R}^{(t)}, \alpha^{(t)} \end{pmatrix} = \arg \min_{\boldsymbol{R}, \alpha} J(\boldsymbol{p}^{(t-1)}, \boldsymbol{R}, \alpha)$$

s.t. $\boldsymbol{R} \succeq \boldsymbol{0},$
 $R_{mm} = \frac{c}{M}, \text{ for } m = 1, \cdots, M,$
 $\alpha > 0.$

- Can be formulated as a constrained convex quadratic program.
- Any convex optimization toolbox e.g. CVX for Matlab, CVXPY, CVXOPT for Python can be used.

Background	Formulation	Algorithm	Discussion
00000000	000	0●000	000000
Optimization	of p		

$$\begin{aligned} \boldsymbol{p}^{(t+1)} &= \arg\min_{\boldsymbol{p}} \ J(\boldsymbol{p}, \boldsymbol{R}^{(t)}, \alpha^{(t)}), \\ \text{s.t.} \ \|\boldsymbol{p}\|_1 &= N, \\ \boldsymbol{p} \in \{0, 1\}^M. \end{aligned}$$

<ロト < 課 ト < 言 ト < 言 ト 三 の へ で 15/24

• Binary optimization problem (NP hard).

Background	Formulation	Algorithm	Discussion
00000000	000	0●000	000000
Optimization of	p		

$$\begin{aligned} \boldsymbol{p}^{(t+1)} &= \arg\min_{\boldsymbol{p}} \ J(\boldsymbol{p}, \boldsymbol{R}^{(t)}, \boldsymbol{\alpha}^{(t)}), \\ \text{s.t.} \ \|\boldsymbol{p}\|_1 &= N, \\ \boldsymbol{p} \in \{0, 1\}^M. \end{aligned}$$

- Binary optimization problem (NP hard).
- Does convex relaxation work?
 - Relax p into [0, 1], optimize for p, then map it back to {0,1}^M using hard thresholding.
 - No exact solution.
 - The solution is not always consistent.
 - Search on real number makes the search space too big to handle.

Background	Formulation	Algorithm	Discussion
00000000	000	0●000	000000
Optimization of	p		

$$\begin{aligned} \boldsymbol{p}^{(t+1)} &= \arg\min_{\boldsymbol{p}} \ J(\boldsymbol{p}, \boldsymbol{R}^{(t)}, \boldsymbol{\alpha}^{(t)}), \\ \text{s.t.} \ \|\boldsymbol{p}\|_1 &= N, \\ \boldsymbol{p} \in \{0, 1\}^M. \end{aligned}$$

• Binary optimization problem (NP hard).

• Does convex relaxation work?

- Relax p into [0, 1], optimize for p, then map it back to {0,1}^M using hard thresholding.
- No exact solution.
- The solution is not always consistent.
- Search on real number makes the search space too big to handle.

Background	Formulation	Algorithm	Discussion
00000000	000	00●00	000000
Optimization of	🛛 (contd.)		

• We propose a tool inspired from *dynamic programming* and *evolutionary algorithm*.

Background	Formulation	Algorithm	Discussion
00000000	000	00●00	000000
Optimization of	o (contd.)		

- We propose a tool inspired from *dynamic programming* and *evolutionary algorithm*.
- For a given (*R*, α), the solution of *J*(*p*): *p* is a binary vector of length *M* with *N* non-zero elements.

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 ・< 16/24</th>

Background	Formulation	Algorithm	Discussion
00000000	000	00●00	000000
Optimization of	o (contd.)		

- We propose a tool inspired from *dynamic programming* and *evolutionary algorithm*.
- For a given (*R*, α), the solution of *J*(*p*): *p* is a binary vector of length *M* with *N* non-zero elements.
- In other words, our search space is a subset of vertices of a hypercube in an *M*-dimensional space.

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 つ< ()</th>
 16/24

Background	Formulation	Algorithm	Discussion
00000000	000	00●00	000000
Optimization of µ	o (contd.)		

- We propose a tool inspired from *dynamic programming* and *evolutionary algorithm*.
- For a given (*R*, α), the solution of *J*(*p*): *p* is a binary vector of length *M* with *N* non-zero elements.
- In other words, our search space is a subset of vertices of a hypercube in an *M*-dimensional space.
- Given the solution p^(k) (parent solution), a new set of candidate solutions p^(k+1)_{CS} is generated as:

$$p_{CS}^{(k+1)} = \left\{ p \mid H\left(p, p^{(k)}\right) = 1, \|p\|_1 < \|p^{(k)}\|_1 \right\}.$$

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 つ< ()</th>
 16/24

Background	Formulation	Algorithm	Discussion
00000000	000	000€0	000000
Optimization of	p (contd.)		

red vertex \Rightarrow the parent solution,

yellow vertices \Rightarrow the candidate solutions p_{CS} ,

blue vertex \Rightarrow the selected solution for the next iteration.

<ロト < 目 > < 目 > < 目 > < 目 > 17/24

Background	Formulation	Algorithm	Discussion
00000000	000	000€0	000000
Optimization of	p (contd.)		

 $\begin{array}{ll} \mbox{red vertex} & \Rightarrow \mbox{the parent solution,} \\ \mbox{yellow vertices} & \Rightarrow \mbox{the candidate solutions } {\pmb{p}_{\text{CS}}}, \\ \mbox{blue vertex} & \Rightarrow \mbox{the selected solution for the next iteration.} \end{array}$

- The cardinality of the new candidate solution is upper bounded by $\left| \boldsymbol{p}_{\text{CS}}^{(k+1)} \right| \leq \| \boldsymbol{p}^{(k)} \|_{1}$.
- Select and propagate the best candidate solution: $p^{(k)} = \arg \min_{p \in p_{CS}^{(k)}} J(p).$

Background	Formulation	Algorithm	Discussion
00000000	000	0000●	000000
The algorithm			

Table: The Proposed Joint Optimization Method

Step 0: Initialize the antenna position vector $\boldsymbol{p}^{(0)} = \mathbf{1}_M$, the complex covariance matrix $\boldsymbol{R}^{(0)} \in \mathbb{C}^{N \times N}$, and the scaling factor $\alpha^{(0)} \in \mathbb{R}_+$, and the outer loop index t = 1.

Step 1: Solve the convex program for \mathbf{R}, α and obtain $(\mathbf{R}^{(t)}, \alpha^{(t)})$.

Step 2: Employ the proposed binary optimization approach for p to obtain the vector $p^{(t+1)}$.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied, e.g. $H(\mathbf{p}^{(t)}, \mathbf{p}^{(t-1)}) = 0$.

・ロト ・ 日 ・ ・ 王 ・ ・ 王 ・ つ へ で 18/24

Numerical e	vomplos		
Background 00000000	Formulation	Algorithm 00000	Discussion

Experimental setup I: $M = 15, N = 10, \hat{\theta} = \{-50^{\circ}, 0^{\circ}, 50^{\circ}\}, \triangle = 20^{\circ}$

Figure: The transmit beampattern design

^[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018 \equiv $2000 \text{ m}^{-19/24}$

0000000	000	00000	•00000		
Numerical examples					

Experimental setup I: $M = 15, N = 10, \hat{\theta} = \{-50^{\circ}, 0^{\circ}, 50^{\circ}\}, \triangle = 20^{\circ}$

Figure: Normalized crosscorrelation coefficients

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018 \equiv 990 19/24

Numerical e	vamples		
Background	Formulation	Algorithm	Discussion
00000000	000	00000	

Experimental setup I: $M = 15, N = 10, \hat{\theta} = \{-50^{\circ}, 0^{\circ}, 50^{\circ}\}, \triangle = 20^{\circ}$

Figure: Final antenna positions

^[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018 \equiv 000 19/24

Background	Formulation	Algorithm	Discussion
00000000	000	00000	o●oooo
Numerical ex	(contd.)		

Experimental setup II: $M = 15, N = 10, \hat{\theta} = \{0^{\circ}\}, \triangle = 60^{\circ}$

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018 \equiv 20/24

Background	Formulation	Algorithm	Discussion
00000000	000	00000	000000
Numerical ex	amples (contd.)		

Experimental setup III:

 $M=20, N=15, \hat{ heta}=\{-60^{\circ}, -30^{\circ}, 0^{\circ}, 30^{\circ}, 60^{\circ}\}, riangle=10^{\circ}$

Computational cost

We consider M = 4 and N = 3 as initialization, and then linearly scale M and N by the factor of $\beta \in \{1, 2, 3, 4\}$.

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design, 2018 ■ • 22/24

Summary			
Background	Formulation	Algorithm	Discussion
00000000		00000	000000

- We jointly design the probing signal covariance matrix as well as the antenna positions to approximate a given beampattern while minimizing the cross-correlation sidelobe.
- We propose a binary optimization framework based on dynamic programming which is realizable in polynomial time.

<ロト<

・<</p>
・<</p>
・<</p>
・<</p>
・<</p>
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The algorithm is highly parallelizable and scalable.

Background	
0000000	D

<ロト < 戸 ト < 三 ト < 三 ト 三 · ク へ ⁽⁾ 24/24

Thank you and Questions?