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Cognitive active sensing

Clutter
refers to unwanted echoes that are usually correlated with the

transmitted signal.

Interference
is the noise as well as jamming signals.
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Background Formulation and Algorithm Discussion

Jointly exploit Tx-Rx DoF

A natural criterion for designing transmit signals and receive filters
is to maximize the signal-to-clutter-plus-interference ratio (SCIR)
of the receiver output at the time of target detection.

Why?
“Pulse compression radar systems make use of transmit
code sequences and receive filters that are specially de-
signed to achieve good range resolution and target de-
tection capability at practically acceptable transmit peak
power levels.” [1]



4/27

Background Formulation and Algorithm Discussion

Jointly exploit Tx-Rx DoF

A natural criterion for designing transmit signals and receive filters
is to maximize the signal-to-clutter-plus-interference ratio (SCIR)
of the receiver output at the time of target detection.

Why?
“Pulse compression radar systems make use of transmit
code sequences and receive filters that are specially de-
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tection capability at practically acceptable transmit peak
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[1] P. Stoica et al., Transmit codes and receive filters for radar, 2008
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How do you deal with quantization in receiver

Quantization on low bitrate?

One-bit quantizer

Low cost
Low power
Faster than traditional scalar
quantizers

Reduction in the
complexity of
hardware
implementation

But we lose some information
The knowledge of interference statistics are available in only a
normalized sense.
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The question we ask:

Q:
Given that the signal covariance matrix can only be
measured in a normalized sense, or in other words,
under uncertainties in interference statistics, can we
still design the transmit signal and the receive filter
coefficients, in a joint manner?

A: Yes, we can!



6/27

Background Formulation and Algorithm Discussion

The question we ask:

Q:
Given that the signal covariance matrix can only be
measured in a normalized sense, or in other words,
under uncertainties in interference statistics, can we
still design the transmit signal and the receive filter
coefficients, in a joint manner?

A: Yes, we can!



7/27

Background Formulation and Algorithm Discussion

Preliminaries

Data model

s =
[
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Preliminaries (contd.)

Data model

y = AHα + ε,

AH =


s1 0 · · · 0 sN sN−1 · · · s2

s2 s1
... 0 sN

...
...

... . . . 0
...

... . . . sN
sN sN−1 · · · s1 0 0 · · · 0

 ,
α = [α0, α1, · · · , αN−1, α−N+1, · · · , α−1]T ∈ C2N−1.

Keep in mind

β , E{|αk |2}, k 6= 0, Γ , E{εεH}.
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Filters

We are after the principal RCS: α0

MF estimate: α̂0 = sHy
‖s‖2

MMF estimate: α̂0 = wHy
wHs , w ∈ CN

MSE(α̂0) = E


∣∣∣∣∣wHy
wHs − α0

∣∣∣∣∣
2
 .
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The criterion

Mean square error

MSE(α̂0) = E


∣∣∣∣∣wHy
wHs − α0

∣∣∣∣∣
2
 = wHRw

|wHs|2

R = β
N−1∑

k=−N+1
k 6=0

JkssHJH
k + Γ,

Jk = JH
−k =


0 . . . 0 1 . . . 0
... . . .

1︸ ︷︷ ︸
k

0 . . . 0 . . .



H

N×N

, k = 0, 1, · · · ,N − 1.
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Primary goal

The optimization criteria

min
w ,s

wHRw
|wHs|2

Cognitive REceiver and Waveform design (CREW)

CREW (gra)[1]

CREW (fre)[1]

CREW (mat)[1]

CREW (cyclic)[2]
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Primary goal

The optimization criteria

min
w ,s

wHRw
|wHs|2

Cognitive REceiver and Waveform design (CREW)

CREW (gra)[1]

CREW (fre)[1]

CREW (mat)[1]

CREW (cyclic)[2]

[1] P. Stoica et al. Optimization of the Receive Filter and Transmit
Sequence for Active Sensing, 2012.

[2] M. Soltanalian et al. Joint Design of the Receive Filter and Transmit
Sequence for Active Sensing, 2013.
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CREW (cyclic)

For fixed s:

ŵ = R−1s

For fixed w :

wHRw = wH

β N−1∑
k=−N+1

k 6=0

JkssHJH
k + Γ

w

= sH

β N−1∑
k=−N+1

k 6=0

Jk wwH︸ ︷︷ ︸
W

JH
k


︸ ︷︷ ︸

Q

s + wHΓw︸ ︷︷ ︸
µ

.
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CREW (cyclic) (contd.)

MSE(α̂0) = sHQs + µ

sHWs ,
a(s)
b(s) = f (s) [Fractional program]

Can be recast as (see [1]):

max
s

sHT̃ s s.t. |sk | = 1, 1 ≤ k ≤ N

where

T , Q + (µ/N)I − f (s∗)W
T̃ , λI − T
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[1] M. Soltanalian et al. Joint Design of the Receive Filter and Transmit
Sequence for Active Sensing, 2013.
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CREW (cyclic) (contd.)

Power method-like iterations

min
s(t+1)

∥∥∥s(t+1) − T̃ s(t)
∥∥∥

2

s.t.
∣∣∣s(t+1)

k

∣∣∣ = 1, 1 ≤ k ≤ N.

The solution is simply given analytically by s(t+1) = ejarg(T̃ s(t)).

Everything is fine so far.
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One-bit receiver

Y (t), a Real-valued, scalar, stationary Gaussian process

RZ (τ) , E{Z (t + τ)Z (t)} = 2
π

sin−1 R̄Y (τ)

where

R̄Y (τ) , RY (τ)/RY (0).

Bussgang theorem
RZY (τ) = ζRY (τ) where ζ depends on the power of the process
Y (t).
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One-bit receiver (contd.)

Complex-valued vector process γ

γ = 1√
2

csign(y) , 1√
2

[sign(Re(y)) + jsign(Im(y))].

Following still holds:

R̄y = sin
(
π

2 Rγ

)
,

where the normalized auto-correlation matrix of y is given as

R̄y ,W− 1
2 RyW− 1

2 ,

and where W = Ry � I.
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Problem formulation

R is measured as R̄ = D− 1
2 RD− 1

2 , where D = R � I.

A meaningful approach to consider:

min
w ,s

E
{

wHD 1
2 R̄D 1

2 w
|wHs|2

}
,

in which the expectation is taken over d = diag(D).
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Problem formulation (contd.)

We follow similar framework as CREW (cyclic).[1]

For fixed w ,

wHRw = wH

β N−1∑
k=−N+1

k 6=0

JkssHJH
k + Γ

w

= sH


β

N−1∑
k=−N+1

k 6=0

Jk wwH︸ ︷︷ ︸
W

JH
k

︸ ︷︷ ︸
χ


s + wHΓw .

[1] M. Soltanalian et al. Joint Design of the Receive Filter and Transmit
Sequence for Active Sensing, 2013.
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Problem formulation (contd.)

The MSE formulation becomes,

MSE(α̂0)
β

= sHχs + µ

sHWs = f (s), where µ = (wHΓw)/β.

The same power method-like iterations still hold:

min
s(t+1)

∥∥∥s(t+1) − T̃ s(t)
∥∥∥

2

s.t.
∣∣∣s(t+1)

k

∣∣∣ = 1, 1 ≤ k ≤ N.

where

T , χ− f (s∗)W
T̃ , λI − T

The solution is simply given analytically by s(t+1) = ejarg(T̃ s(t)).
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Problem formulation (contd.)

For fixed s:

E
{

wHD 1
2 R̄D 1

2 w
|wHs|2

}
=

E
{

tr
(
wwHD 1

2 R̄D 1
2
)}

|wHs|2

=
E
{

dH
(
wwH � R̄H

)
d
}

|wHs|2

=
tr
((

wwH � R̄H
)
E
{

ddH
})

|wHs|2 .

d � D � R � {β,Γ}
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Problem formulation (contd.)
Γ can be measured in a similar way in a normalized sense.

Γ̄ = A−
1
2 ΓA−

1
2 ,

Then R becomes,
R = D

1
2 R̄D

1
2 = βS + A

1
2 Γ̄A

1
2 . [S =

∑
k 6=0

JkssHJH
k ]

Solve,
{d̂ , â, β̂} = arg min

d ,a,β

∥∥∥Diag(d)
1
2 R̄ Diag(d)

1
2 (1)

−βS −Diag(a)
1
2 Γ̄ Diag(a)

1
2
∥∥∥2

F
,

s.t. d > 0, a > 0, β > 0.

– Non-convex and hard problem to solve,
– Can be solved in an alternative manner,
– Solution will provide β and d in an average sense.
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{d̂ , â, β̂} = arg min

d ,a,β

∥∥∥Diag(d)
1
2 R̄ Diag(d)

1
2 (1)

−βS −Diag(a)
1
2 Γ̄ Diag(a)

1
2
∥∥∥2

F
,

s.t. d > 0, a > 0, β > 0.

– Non-convex and hard problem to solve,
– Can be solved in an alternative manner,
– Solution will provide β and d in an average sense.



21/27

Background Formulation and Algorithm Discussion

Problem formulation (contd.)
Γ can be measured in a similar way in a normalized sense.

Γ̄ = A−
1
2 ΓA−

1
2 ,

Then R becomes,
R = D

1
2 R̄D

1
2 = βS + A

1
2 Γ̄A

1
2 . [S =

∑
k 6=0

JkssHJH
k ]

Solve,
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Problem formulation (contd.)
Lets EVD: ddH =

∑N
k=1 νkukuH

k

tr
((

wwH � R̄H
) N∑

k=1
νkukuH

k

)

=
N∑

k=1
νkuH

k

(
wwH � R̄H

)
uk

= tr
((

wwH
) N∑

k=1
νk diag(uk) R̄ diag

(
uH

k

))
= wHQw ,

where

Q =
N∑

k=1
νk diag(uk) R̄ diag(uH

k ).
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Problem formulation (contd.)

Finally, for fixed s:

min
w ,s

wHQw
|wHs|2 .

which has a closed-from solution:

ŵ = Q−1s,

within a multiplicative constant.
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CREW (one-bit)

Step 0: Initialize s as a unimodular (or low PAR) vector in
CN , w as a random vector in CN , and the outer loop index
t = 1.

Step 1: For fixed w ,

Step 1.1: Compute χ,W , and in turn T̃ ,

Step 1.2: Solve the power method like iterations and
calculate s(t) in each iteration until convergence.

Step 2: Measure Γ̄ and compute R̄ from the output.

Step 3: For fixed s,

Step 3.1: Solve (1) to optimize d ,

Step 3.2: Compute the EVD of ddH , and in turn Q,

Step 3.3: Compute optimize w (t) as Q−1s(t).
Step 4: Repeat steps 1 to 3 until a pre-defined stop criterion
is satisfied, e.g.

∣∣MSE(t+1) − MSE(t)
∣∣ < ε.
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Numerical example

Figure: MSE vs N for different algorithms
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Summary

We design the transmit signal and the receive filter
coefficients, in a joint manner in a scenario where the
interference information can only be measured in a normalized
sense, or in other words, under uncertainties in interference
statistics.
The knowledge of the one-bit measurements impacts the
design of the filter coefficients and in turn the design of
the filter impacts the design of transmit signal and so on.
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Thank you
and

Questions?
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