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Motivation

Recommendation system
Why do we need them?

– To recommend relevant stuff to other people
– To take informative decisions

Who need them?
– Pretty much everyone
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Overview

Some context
Earlier in the days of Netflix prize, most of the recommender
systems were based on explicit data.
Implicit feedback data has become more popular in both
academia and industries to build robust recommender systems.

Features of implicit data
No Negative feedback
Inherently noisy
Preference vs. confidence

Latent factor models
An alternative approach to neighborhood models
Examples: Matrix factorization, Latent semantic models,
Latent dirichlet allocation
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Learning recommendation systems

The matrix factorization can be reformulated as an
optimization problem with loss function and constraints
We choose the best recommender out of a family of
recommenders during the optimization process
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Learning recommendation system blocks

Model
Can be a matrix factorization model or a linear regression
model
Has some parameters like matrices in a matrix decomposition
that we would be optimizing during the process

Utility function or loss function
θ: Parameters of our recommendation model like user and
item matrices in matrix factorization
g(θ): Loss function that we are trying to minimize

arg min
θ

g(θ)

Optimization algorithm
Choose anything that fits the purpose (e.g. Alternating least
sqaures (ALS))
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A short diversion to Matrix factorization using ALS

What is Alternating least sqaures1?
Loss function

min
xu ,yi

∑
u,i

cui (pui − xT
u yi )2 + λ

(∑
u
‖xu‖2 +

∑
u
‖yi‖2

)

The good news2

Inspite of the large sparsity in the dataset, the recommender
system gave an AUC value of ∼90%

However,
The algorithm performs better in terms of finding similar items,
but not very effective in recommending items to a particular user

1Y. Hu et al. Collaborative filtering for implicit feedback, 2008
2A. Narapareddy, https://bit.ly/2QCEn8V, 2019
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What questions ALS does and does not answer?

ALS reduces the impact of missing data using confidence and
preference metrics
It optimizes to predict if an item is selected by a user or not
It does not directly optimize its model parameters for ranking
Bayesian Personalized Ranking3optimization criterion involves
pairs of items(the user-specific order of two items) to come up
with more personalized rankings for each user

3S Rendle et al. BPR: Bayesian Personalized Ranking from Implicit
Feedback, 2012
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Bayesian Personalized Ranking

“First of all, it is obvious that this optimization is
on instance level (one item) instead of pair level (two
items) as BPR. Apart from this, their optimization is a
leastsquare which is known to correspond to the MLE
for normally distributed random variables. However,
the task of item prediction is actually not a regression
(quantitative), but a classification (qualitative) one,
so the logistic optimization is more appropriate.”

— Steffen Rendle et al. BPR: Bayesian Person-
alized Ranking from Implicit Feedback
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Bayesian personalized ranking approach
The primary task of personalized ranking is to provide a user
with a ranked list of items
General implicit data representation:

– U: set of all users
– I: set of all items
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Bayesian personalized ranking
The dataset would be considered as (u, i , j) ∈ DS
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Like in any Bayesian approach, they have a likelihood function ,
prior probability and posterior probability in this approach.

“The Bayesian formulation of finding the correct per-
sonalized ranking for all items i ∈ I is to maximize the
posterior probability P{Θ| >u} where Θ represents the
parameter vector of an arbitrary model class (e.g. ma-
trix factorization).”
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Our contribution

CPR: Comprehensive Personalized Ranking
We present a similar yet deeper Bayesian framework to
address the recommendation problem, which not only utilizes
the one-bit item-item preference of a user, but also exploits
the implicit inclination of different users towards an item.

(u, k, l) ∈ Du

(m, i , j) ∈ Dm

We provide a stochastic-gradient based approach to learn the
system parameters.
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Problem Formulation

Sets
U: the set of all users
I: the set of all items
Ω: the internal system parameter (e.g. a user/item latent matrix)

Notations
i >u j ⊂ I2: the user u prefers item i over item j
k >m l ⊂ U2: user k is more likely to buy item m than user l

Identities
totality : i 6=u j ⇒ i >u j ∨ j >u i : ∀ i , j ∈ I

antisymmetry : i >u j ∧ j >u i ⇒ i =u j : ∀ i , j ∈ I
transitivity : i >u j ∧ j >u k ⇒ i >u k : ∀ i , j , k ∈ I

[same idea goes for observations k >m l ⊂ U2]
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The Posterior, the Likelihood and the Prior functions

The problem we are interested in:

P{Ω| >u, >m} = α · P{>u, >m |Ω} P{Ω}

When Ω is given, not only the ordering of each pair of items
becomes independent of rest of the orderings, but also two
users can no longer influence other’s vote.

P{>u, >m |Ω} = P{>u |Ω}P{>m |Ω} (1)
P{>u |Ω} =

∏
(k,l)∈Du

P{k >u l |Ω} (2)

P{>m |Ω} =
∏

(i ,j)∈Dm

P{i >m j |Ω} (3)

The individual probability functions

P{k >u l |Ω} , f (cu, x̂ukl (Ω)) (4)
P{i >m j |Ω} , f (cm, x̂ijm(Ω)) (5)
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The choice of f (c , x)

f (c, x) , 1
2 + 1

2 tanh(cx)
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The user/item entity specific functions x̂ijm(Ω) and x̂ukl(Ω)

The estimates

x̂ukl (Ω) , x̂uk(Ω)− x̂ul (Ω) (6)
x̂ijm(Ω) , x̂im(Ω)− x̂jm(Ω) (7)

can be modeled as X̂ = PQT using matrix factorization (MF) as
x̂uk , 〈pu,qk〉 = pT

u qk =
r∑

t=1
putqtq

x̂im , 〈pi ,qm〉 = pT
i qm =

r∑
t=1

pitqtm

Hence
x̂ukl = pT

u (qk − ql ) (8)
x̂ijm = (pi − pj)T qm (9)
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The likelihood function

Hence

P{>u, >m |Ω} =
|U|∏
u=1

∏
(k,l)∈Du

f (cu, x̂ukl (Ω))×
|I|∏

m=1

∏
(i ,j)∈Dm

f (cm, x̂ijm(Ω))
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The prior function

Assume, the system parameters: Ω , [PT | QT ] = [ω1 · · ·ωN ] are
independent normalized multivariate normal random variables with
known covariance matrices {Σn}Nn=1 where N is the number of
parameter vectors in Ω.

The prior

P{Ω} = 1
(2π) N

2
∏

n |Σn|
1
2

exp
{
−1

2
∑

n
ωT

n Σ−1
n ωn

}
(10)
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Comprehensive Personalized Ranking (CPR)

Finally

CPR , lnP{Ω| >u, >m}

' lnP{>u, >m |Ω} P{Ω}
'

∑
u

∑
(k,l)∈Du

ln f (cu, x̂ukl (Ω)) (11)

+
∑
m

∑
(i ,j)∈Dm

ln f (cm, x̂ijm(Ω))

− 1
2
∑

n
ωT

n Σ−1
n ωn
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Learning the CPR

∂

∂Ωln f (c, x̂) = c(1− tanh(cx̂)) ∂

∂Ω x̂

∂

∂Ω x̂ijm =


(pit − pjt), ωt = qtm,

qtm, ωt = pit ,
−qtm, ωt = pjt ,

0, otherwise

∂

∂Ω
1
2
∑

n
ωT

n Σ−1
n ωn = [Σ−1

1 ω1 · · · Σ−1
N ωN ]

Eventually

Ωnew ← Ω− µ ∂

∂ΩCPR, (12)
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Numerical examples

Experimental setup
Partial MovieLens dataset4

600 ratings given by 40 users judging 60 movies on a scale
between 1 to 5
We start by converting the rating matrix to comparison data
and these data are stored in a memory-efficient way
In order to handle large amount of data we resort to the
stochastic gradient descent method and mini-batch learning

4F. M. Harper et al. The MovieLens datasets: History and context, 2015
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Numerical examples

Nature of experiments
The method relies on the data in an r -dimensional space.
Also, as many users tend to show shared interest in only
specific subsets of items, the rating matrix is low-rank
A natural metric to determine the rank of the original rating
matrix, rX , can be to look at its r largest singular values
When r < rX , the method cannot allocate all the information
in an r -dimensional space. And when r > rX , the method puts
most of the recovered information in an rX -dimensional space
and places little to no information in the remaining dimensions
One can use the ratio of the r -th largest to the largest
singular value of the recovered matrix as a metric to
determine the true rank. This ratio should drop drastically as
soon as r gets greater than rX
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Numerical examples

(a) (b)
Figure: The results for different algorithms: (a) normalized values of
various metrics on the recovered rating matrices versus the expected rank
r , (b) the normalized number of mismatches between the original
comparison data and the comparisons made from the recovered data for
CPR, kNN and SVD.
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Summary

We studied a new optimization framework based on one-bit
preference comparison data to develop the Comprehensive
Personalized Ranking (CPR) system.
The algorithm relies on a Bayesian treatment of the data, and
maximizes the posterior probability of the system parameters.
A learning model w.r.t. the optimization problem using matrix
factorization is provided.
Initial numerical results were provided to show the
effectiveness of the algorithm.
The study of the impact of the rating matrix size on the
projected rank would be an interesting future research avenue
as the projected rank of a matrix significantly controls the
storage and computational efficiency of the algorithm.
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Thank you
and

Questions?
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