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Motivation

Unimodular sequences with good correlation properties
Unimodular sequences whose auto-correlation function is zero
except at some or all correlation lags are of great interest in
engineering and technology.
Where?

Channel estimation,
System identification.
Active sensing,
Medical imaging,
Radar waveform design and many more...
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System Identification

Starting with Strictly Linear (SL) Systems

x(n) = (h ⊗ c)(n) + v(n)

Goal: To estimate the coefficients of the filter {h(n)L−1
n=0}.

Given: The observation x(n) against input sequence c(n).
Also, E{v(n)} = 0, E{v(n)v ∗ (m)} = σ2

vδ(m − n).
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Estimation of SL systems
Consider a sequence c(n), used to excite the system is chosen
to be periodic with period P and mean average power
σ2

c = P−1∑P−1
l=0 |c(l)|2.

The process: x(n) =
∑P−1

l=0 h(l)c(n − l) + v(n).
First order statistics: E{x(nP + l)} =

∑P−1
m=0 h(m)c(l −m).

Estimate of the first order statistics:
Ê{x(l)} = 1

NP

∑NP−1
n=0 x(nP + l), where N = NPP and NP is

number of periods in the probing sequence for
l = {0, 1, · · · ,P − 1}.
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Estimation of SL systems
Define: Ê{x} = [Ê{x(0) Ê{x(1) · · · Ê{x(P − 1)}]T .

The estimation: ĥ = C−1Ê{x}

C is a circulant matrix,

C =


c(0) c(P − 1) · · · c(2) c(1)
c(1) c(0) · · · c(3) c(2)

...
... . . . ...

...
c(P − 1) c(P − 2) · · · c(1) c(0)


P×P

.

Estimation is straight-forward, easier with structure.
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Designing sequences for SL Systems
Considerable amount of literature is available to design
sequences for SL signal processing.
Formulation is based on minimizing the contribution of the
aperiodic or periodic autocorrelation functions for the
out-of-phase coefficients.
Many numerical algorithm has been proposed minimizing
metrics such as PSL (peak sideloab level), ISL (integrated
sideloab level), PAPR (peak to average power ratio) etc.

However,
These sequences does not show promising efficiency for certain
systems. It has been shown in the literature1, that improved results
can be obtained if the full second order characteristics of processes
are considered, by performing widely linear (WL) signal processing.

1B. Picinbono et al. Widely linear estimation with complex data. 1995.
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Why WL systems?
There is an additional degree of freedom that can be exploited
when compared to SL systems, which is the complex
conjugate of the input signal.
Modeling of systems using WL structures is quite common in
wireless systems, when non-linear radio frequency (RF)
impairments such as in-phase and quadrature-phase (I/Q)
imbalances are considered in the analysis of signal
propagation2.

2I. A. Arriaga-Trejo et al. Unimodular Sequences with Low Complementary
Autocorrelation Properties. 2018.
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There is an additional degree of freedom that can be exploited
when compared to SL systems, which is the complex
conjugate of the input signal.
Modeling of systems using WL structures is quite common in
wireless systems, when non-linear radio frequency (RF)
impairments such as in-phase and quadrature-phase (I/Q)
imbalances are considered in the analysis of signal
propagation2.

In order to compensate the I/Q imbalances at the receiver, it is
necessary to compute the complete second order statistics of
the received signal, namely the auto-correlation and
complementary correlation.

2I. A. Arriaga-Trejo et al. Unimodular Sequences with Low Complementary
Autocorrelation Properties. 2018.
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What are Widely Linear (WL) Systems?
In general, a WL system is characterized by the impulse
responses {h1(n)L−1

n=0} and {h2(n)L−1
n=0}.

x(n) = (h1 ⊗ c)(n) + (h2 ⊗ c∗)(n) + v(n)

Notice that, x is not a linear function of c, however the k-th
order moment of x is completely defined from the k-th order
moments of c and c∗.
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Estimation of WL systems
There are 2L unknowns, hence c(n) must be chosen with
period at least P = 2L and consider each filter h1 and h2 with
P/2 coefficients .
The process:
x(n) =

∑P/2−1
l=0 h1(l)c(n − l) +

∑P/2−1
l=0 h2(l)c∗(n − l) + v(n).

First order statistics: E{x(nP + l)} =∑P/2−1
m=0 h1(m)c(l −m) +

∑P/2−1
m=0 h2(m)c∗(l −m).

Estimate of the first order statistics:
Ê{x(l)} = 1

NP

∑NP−1
n=0 x(nP + l), where N = NPP and NP is

number of periods in the probing sequence.
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Estimation of WL systems
Define: E{x} = [E{x(nP) E{x(nP + l) · · ·E{x(nP + P − 1)}]T .

E{x} = C̄P/2h1 + C̄∗P/2h2 = C̄ h̄

where,

h1 = [h1(0) h1(1) · · · h1(P/2− 1)]T

h2 = [h2(0) h2(1) · · · h2(P/2− 1)]T

h̄ = [hT
1 hT

2 ]T

C̄P/2 =


c(0) c(P − 1) · · · c(P

2 + 2) c(P
2 + 1)

c(1) c(0) · · · c(P
2 + 3) c(P

2 + 2)
...

... . . . ...
...

c(P − 1) c(P − 2) · · · c(P
2 + 1) c(P

2 )


P×P

2

C̄ = [C̄P/2 C̄∗P/2].
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Estimation of WL systems

The estimation: ĥ = C̄−1Ê{x}

Even though the estimator has the same form as SL system
identification, notice that C̄ is an augmented matrix, instead
of a circulant structure.
In order for C̄ to be invertible, c(n) must be complex.
Also, a WL system cannot be identified using the delta
function δ(n).
So, they need to be handled differently.
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Our goal
Construction of sets of unimodular sequences possessing good
correlation as well as good complementary correlation properties.
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Problem Formulation

Lets start with
{xm(n)}N−1,M

n=0,m=1 as the set of M complex unimodular
sequences, each of length N.
xm(n) = ejφm(n) for all m, n where the phases {φm(n)} can
have arbitrary values from [−π, π].
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Definitions
Cross-correlation:
rm1m2(n) =

∑N−1
k=n xm1(k)x∗m2(k − n) = r∗m2m1(−n).

Complementary cross-correlation (or just relation):
γm1m2(n) =

∑N−1
k=n xm1(k)xm2(k − n) = γm2m1(−n).

In the case of SL, minimize the integrated sidelobe level (ISL):

ES ,
M∑

m=1

N−1∑
n=−N+1

n 6=0

|rmm(n)|2

+
M∑

m1=1

M∑
m2=1

m2 6=m1

N−1∑
n=−(N−1)

|rm1m2(n)|2.
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Generalized Weighted ISL for WL

E ,
M∑

m=1

N−1∑
n=−N+1

n 6=0

α2
n|rmm(n)|2

+
M∑

m=1

N−1∑
n=−N+1

β2
n |γmm(n)|2

+
M∑

m1=1

M∑
m2=1

m2 6=m1

N−1∑
n=−(N−1)

α2
n|rm1m2(n)|2

+
M∑

m1=1

M∑
m2=1

m2 6=m1

N−1∑
n=−(N−1)

β2
n |γm1m2(n)|2
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By the way,

Rn =


r11(n) r12(n) · · · r1M(n)
r21(n) r22(n) · · · r2M(n)

...
... . . . ...

rM1(n) rM2(n) · · · rMM(n)


M×M

, (1)

Γn =


γ11(n) γ12(n) · · · γ1M(n)
γ21(n) γ22(n) · · · γ2M(n)

...
... . . . ...

γM1(n) γM2(n) · · · γMM(n)


M×M

, (2)

where n = −(N − 1), · · · , 0, · · · ,N − 1.
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The Algorithms

The matrix form

E = α2
0‖R0 − NIM‖2F + β2

0‖Γ0‖2F

+ 2
N−1∑
n=1

α2
n‖Rn‖2F + β2

n‖Γn‖2F

=
N−1∑

n=−(N−1)
α2

n‖Rn − NIMδn‖2F +
N−1∑

n=−(N−1)
β2

n‖Γn‖2F .
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Parseval-type equality:

E = 1
2N

2N∑
p=1
‖Φr (ωp)− α0NIM‖2F + ‖Φγ(ωp)‖2F

Φr (ω) =
N−1∑

n=−(N−1)
αnRne−jnω,

Φγ(ω) =
N−1∑

n=−(N−1)
βnΓne−jnω,

and ωp = 2π
2N p for p = 1, · · · , 2N.
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Consequently,

Φr (ωp) = 1
2π

∫ π

−π
A(ωp − ψ) χ(ψ)χH(ω) dψ

= χ̃T (ωp)Aχ̃∗(ωp) = (χ̃H(ωp)Aχ̃(ωp))T

Φγ(ωp) = χ̃T (ωp)Bχ̃(ωp).

where, χ̃T (ωp) = [x̃(0)e−j0ωp · · · x̃(N − 1)e−j(N−1)ωp ]T
and, x̃(n) = [x1(n) x2(n) · · · xM(n)]T .

The reduced criterion

E = 1
2N

2N∑
p=1
‖χ̃p

HAχ̃p − α0NIM‖2F + ‖χ̃p
T Bχ̃p‖2F .
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Going down from quartic to quadratic:

E = 1
2N

2N∑
p=1

tr
[
(χ̃p

HAχ̃p − α0NIM)H

×(χ̃p
HAχ̃p − α0NIM)

]
+ tr

(
[(χ̃p

T Bχ̃p)H(χ̃p
T Bχ̃p)]

)
≤ 1

2N

2N∑
p=1
‖A‖2F‖χ̃p‖4F − 2α0N‖A‖F‖χ̃p‖2F

+ α2
0N2M + ‖B‖2F‖χ̃p‖4F

= ‖A‖
2
F + ‖B‖2F

2N ×
2N∑

p=1

(
‖χ̃p‖2F −

α0N‖A‖F
‖A‖2F + ‖B‖2F

)2

+ const.
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The reduced optimization problem

min
χ̃p ,vp

2N∑
p=1
‖χ̃p − Vp‖2F

s.t. |xm(n)| = 1, ‖Vp‖2F = κ

where κ = α0N‖A‖F
‖A‖2F + ‖B‖2F

which can be solved in a cyclic way.

Note
Both criterions are “almost equivalent” to each other in the sense
that if one takes on a small value, so does the other; particularly,
the quadratic terms become zero if the above is zero, and vice
versa.
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Redefine the problem: G-WeCAN

fp = [e−jωp · · · e−j2Nωp ]T ,
F = [f1 · · · f2N ],
X̄ = [X 0]TM×2N ,

V = [v1 · · · v2N ]T

where vi is the ith column of Vp.

min
{xm(n)}N−1,M

n=0,m=1,

{vp}2N
p=1

∥∥∥FHX̄ − V
∥∥∥2

F

s.t. |xm(n)| = 1, ‖Vp‖2F = κ.

Can be solved using cyclic algorithms.
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Numerical Examples

Experimental setup - I
Consider sequence length N = 128 is employed to estimate a SL
and WL system with L = 24.
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(a) (b)

Figure: (a) Variance of the estimation error obtained when identifying the
impulse response {h(n)}23

n=0 of a SL system and (b) Variance of
estimation error when identifying the responses {h1(n)}23

n=0 and
{h2(n)}23

n=0 of a widely linear system.



23/26

Motivation Formulation Algorithms Discussion

Experimental setup - II
We generate sets of sequences with sequence length
N = {10, 30, 100, 300, 1000} and M = 3 for G-WeCAN to compare
with CAN, WeCAN in terms of overall ISL metric.
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(a) (b)

Figure: Comparison of (a) ISL metric and (b) computation times for
CAN, WeCAN and G-WeCAN sequence with
N = {10, 30, 100, 300, 1000} and M = 3.
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Summary

Pros
Cyclic algorithms to generate sets of unimodular sequences
with good correlation and complementary correlation
properties which is important for WL signal processing.
Can be used to design very long sequences (N ∼ 105) in a
short period of time.

Con
The matrices A and B give similar shapes to the correlation
and complementary correlation of the final sequence sets. The
algorithm fails when we use different specifications for A and
B (future work).
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Thank you
and

Questions?
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