Motivation 0000000 Formulation

Algorithms 000000 Discussion 000000

(ロ)、(部)、(E)、(E)、 E) の(で 1/26)

Generalized Cyclic Algorithms for Designing Unimodular Sequence Sets with Good (Complementary) Correlation Properties

> Arindam Bose Israel A. Arriaga-Trejoy Aldo G. Orozco-Lugoz Mojtaba Soltanalian

> > July 09, 2018

Motivation	Formulation	Algorithms	Discussion
00000000	0000	000000	000000
Table of cont	onts		

Motivation	Formulation	Algorithms	Discussion
•000000			
Mativation			

Unimodular sequences with good correlation properties

- Unimodular sequences whose auto-correlation function is zero except at some or all correlation lags are of great interest in engineering and technology.
- Where?
 - Channel estimation,
 - System identification.
 - Active sensing,
 - Medical imaging,
 - Radar waveform design and many more...

Motivation	Formulation	Algorithms	Discussion
•000000	0000	000000	000000
Mativation			

Unimodular sequences with good correlation properties

- Unimodular sequences whose auto-correlation function is zero except at some or all correlation lags are of great interest in engineering and technology.
- Where?
 - Channel estimation,
 - System identification.
 - Active sensing,
 - Medical imaging,
 - Radar waveform design and many more...

Motivation	Formulation	Algorithms	Discussion
0000000			
System Identifica	tion		

Starting with Strictly Linear (SL) Systems

$$x(n) = (h \otimes c)(n) + v(n)$$

- Goal: To estimate the coefficients of the filter $\{h(n)_{n=0}^{L-1}\}$.
- Given: The observation x(n) against input sequence c(n).
- Also, $E\{v(n)\} = 0$, $E\{v(n)v * (m)\} = \sigma_v^2 \delta(m-n)$.

Motivation	Formulation	Algorithms	Discussion
000000	0000	000000	000000

Estimation of SL systems

- Consider a sequence c(n), used to excite the system is chosen to be periodic with period P and mean average power σ²_c = P⁻¹ Σ^{P-1}_{I=0} |c(I)|².
- The process: $x(n) = \sum_{l=0}^{P-1} h(l)c(n-l) + v(n)$.
- First order statistics: $E\{x(nP+l)\} = \sum_{m=0}^{P-1} h(m)c(l-m)$.
- Estimate of the first order statistics: $\hat{E}\{x(I)\} = \frac{1}{N_P} \sum_{n=0}^{N_P-1} x(nP+I)$, where $N = N_P P$ and N_P is number of periods in the probing sequence for $I = \{0, 1, \dots, P-1\}$.

Motivation	Formulation	Algorithms	Discussion
000000	0000	000000	000000

Estimation of SL systems

۲

• Define: $\hat{E}\{\mathbf{x}\} = [\hat{E}\{x(0) \ \hat{E}\{x(1) \ \cdots \ \hat{E}\{x(P-1)\}]^T$.

$$\hat{\boldsymbol{h}} = \boldsymbol{C}^{-1} \hat{\boldsymbol{E}} \{ \boldsymbol{x} \}$$

• C is a circulant matrix,

$$\boldsymbol{C} = \begin{bmatrix} c(0) & c(P-1) & \cdots & c(2) & c(1) \\ c(1) & c(0) & \cdots & c(3) & c(2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c(P-1) & c(P-2) & \cdots & c(1) & c(0) \end{bmatrix}_{P \times P}$$

• Estimation is straight-forward, easier with structure.

Algorithms 000000

Designing sequences for SL Systems

- Considerable amount of literature is available to design sequences for SL signal processing.
- Formulation is based on minimizing the contribution of the aperiodic or periodic autocorrelation functions for the out-of-phase coefficients.
- Many numerical algorithm has been proposed minimizing metrics such as PSL (peak sideloab level), ISL (integrated sideloab level), PAPR (peak to average power ratio) etc.

However,

These sequences does not show promising efficiency for certain systems. It has been shown in the literature¹, that improved results can be obtained if the full second order characteristics of processes are considered, by performing widely linear (WL) signal processing.

¹B. Picinbono et al. Widely linear estimation with complex data. 1995. 200 6/26

Motivation	Formulation	Algorithms	Discussion
0000000	0000	000000	000000

Why WL systems?

- There is an additional degree of freedom that can be exploited when compared to SL systems, which is the complex conjugate of the input signal.
- Modeling of systems using WL structures is quite common in wireless systems, when non-linear radio frequency (RF) impairments such as in-phase and quadrature-phase (I/Q) imbalances are considered in the analysis of signal propagation².

on Algorithms	s Discussion
Î	on Algorithm: 000000

Why WL systems?

- There is an additional degree of freedom that can be exploited when compared to SL systems, which is the complex conjugate of the input signal.
- Modeling of systems using WL structures is quite common in wireless systems, when non-linear radio frequency (RF) impairments such as in-phase and quadrature-phase (I/Q) imbalances are considered in the analysis of signal propagation².
 - In order to compensate the I/Q imbalances at the receiver, it is necessary to compute the complete second order statistics of the received signal, namely the auto-correlation and complementary correlation.

Motivation	Formulation	Algorithms	Discussion
00000000			

What are Widely Linear (WL) Systems?

 In general, a WL system is characterized by the impulse responses {h₁(n)^{L-1}_{n=0}} and {h₂(n)^{L-1}_{n=0}}.

$$x(n) = (h_1 \otimes c)(n) + (h_2 \otimes c^*)(n) + v(n)$$

Notice that, x is not a linear function of c, however the k-th order moment of x is completely defined from the k-th order moments of c and c*.

Motivation	Formulation	Algorithms	Discussion
00000000	0000	000000	000000

Estimation of WL systems

- There are 2L unknowns, hence c(n) must be chosen with period at least P = 2L and consider each filter h_1 and h_2 with P/2 coefficients.
- The process: $x(n) = \sum_{l=0}^{P/2-1} h_1(l)c(n-l) + \sum_{l=0}^{P/2-1} h_2(l)c^*(n-l) + v(n).$ • First order statistics: $E\{x(nP+l)\} = \sum_{m=0}^{P/2-1} h_1(m)c(l-m) + \sum_{m=0}^{P/2-1} h_2(m)c^*(l-m).$ • Estimate of the first order statistics:
- Estimate of the first order statistics: $\hat{E}\{x(l)\} = \frac{1}{N_P} \sum_{n=0}^{N_P-1} x(nP+l)$, where $N = N_P P$ and N_P is number of periods in the probing sequence.

Motivation	Formulation	Algorithms	Discussion
⊃00000●0	0000	000000	000000
	C) A //		

Estimation of WL systems

Define:
$$E\{\mathbf{x}\} = [E\{x(nP) \ E\{x(nP+l) \ \cdots \ E\{x(nP+P-1)\}]^T$$

 $E\{\mathbf{x}\} = \bar{\mathbf{C}}_{P/2}\mathbf{h}_1 + \bar{\mathbf{C}}_{P/2}^*\mathbf{h}_2 = \bar{\mathbf{C}}\bar{\mathbf{h}}$

where,

$$\begin{split} \mathbf{h}_{1} &= [h_{1}(0) \ h_{1}(1) \ \cdots \ h_{1}(P/2 - 1)]^{T} \\ \mathbf{h}_{2} &= [h_{2}(0) \ h_{2}(1) \ \cdots \ h_{2}(P/2 - 1)]^{T} \\ \mathbf{\bar{h}} &= [\mathbf{h}_{1}^{T} \ \mathbf{h}_{2}^{T}]^{T} \\ \mathbf{\bar{C}}_{P/2} &= \begin{bmatrix} c(0) \ c(P - 1) \ \cdots \ c(\frac{P}{2} + 2) \ c(\frac{P}{2} + 1) \\ c(1) \ c(0) \ \cdots \ c(\frac{P}{2} + 3) \ c(\frac{P}{2} + 2) \\ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ c(P - 1) \ c(P - 2) \ \cdots \ c(\frac{P}{2} + 1) \ c(\frac{P}{2}) \end{bmatrix}_{P \times \frac{P}{2}} \\ \mathbf{\bar{C}} &= [\mathbf{\bar{C}}_{P/2} \ \mathbf{\bar{C}}_{P/2}^{*}]. \end{split}$$

Motivation	Formulation	Algorithms	Discussion
00000000	0000	000000	000000

Estimation of WL systems

The estimation:

$$\hat{\boldsymbol{h}} = \bar{\boldsymbol{C}}^{-1} \hat{\boldsymbol{E}} \{ \boldsymbol{x} \}$$

• Even though the estimator has the same form as SL system identification, notice that \bar{C} is an augmented matrix, instead of a circulant structure.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

- In order for $\bar{\boldsymbol{C}}$ to be invertible, c(n) must be complex.
- Also, a WL system cannot be identified using the delta function $\delta(n)$.
- So, they need to be handled differently.

Motivation	Formulation	Algorithms	Discussion
0000000			

Our goal

Construction of sets of unimodular sequences possessing good correlation as well as good complementary correlation properties.

・ロト (母) (主) (主) (主) (20 (10/26)

Motivation	Formulation	Algorithms	Discussion
	0000		
Droblom For	mulation		

Lets start with

- {x_m(n)}^{N-1,M}_{n=0,m=1} as the set of M complex unimodular sequences, each of length N.
- $x_m(n) = e^{j\phi_m(n)}$ for all m, n where the phases $\{\phi_m(n)\}$ can have arbitrary values from $[-\pi, \pi]$.

<ロ > < 部 > < E > < E > E の Q の 11/26

Motivation	Formulation	Algorithms	Discussion
	0000		

Definitions

• Cross-correlation:

$$r_{m_1m_2}(n) = \sum_{k=n}^{N-1} x_{m_1}(k) x_{m_2}^*(k-n) = r_{m_2m_1}^*(-n).$$

• Complementary cross-correlation (or just relation): $\gamma_{m_1m_2}(n) = \sum_{k=n}^{N-1} x_{m_1}(k) x_{m_2}(k-n) = \gamma_{m_2m_1}(-n).$

Motivation	Formulation	Algorithms	Discussion
0000000	0000	000000	000000

Definitions

Cross-correlation:

$$r_{m_1m_2}(n) = \sum_{k=n}^{N-1} x_{m_1}(k) x_{m_2}^*(k-n) = r_{m_2m_1}^*(-n).$$

- Complementary cross-correlation (or just relation): $\gamma_{m_1m_2}(n) = \sum_{k=n}^{N-1} x_{m_1}(k) x_{m_2}(k-n) = \gamma_{m_2m_1}(-n).$
- In the case of SL, minimize the integrated sidelobe level (ISL):

$$\mathcal{E}_{S} \triangleq \sum_{m=1}^{M} \sum_{\substack{n=-N+1 \ n \neq 0}}^{N-1} |r_{mm}(n)|^{2} + \sum_{\substack{m_{1}=1 \ m_{2} \neq m_{1}}}^{M} \sum_{\substack{m_{2}=1 \ m_{2} \neq m_{1}}}^{N-1} \sum_{\substack{n=-(N-1) \ m_{1}m_{2}(n)}}^{N-1} |r_{m_{1}m_{2}}(n)|^{2}.$$

<ロト < @ ト < E ト < E ト ラ マ C 12/26

Motivation	Formulation	Algorithms	Discussion
	0000		

Generalized Weighted ISL for WL

$$\mathcal{E} \triangleq \sum_{m=1}^{M} \sum_{\substack{n=-N+1\\n\neq 0}}^{N-1} \alpha_n^2 |r_{mm}(n)|^2 + \sum_{m=1}^{M} \sum_{\substack{n=-N+1\\n\neq 0}}^{N-1} \beta_n^2 |\gamma_{mm}(n)|^2 + \sum_{m_1=1}^{M} \sum_{\substack{m_2=1\\m_2\neq m_1}}^{N-1} \sum_{\substack{n=-(N-1)\\m_2\neq m_1}}^{N-1} \alpha_n^2 |r_{m_1m_2}(n)|^2 + \sum_{m_1=1}^{M} \sum_{\substack{m_2=1\\m_2\neq m_1}}^{N-1} \sum_{n=-(N-1)}^{N-1} \beta_n^2 |\gamma_{m_1m_2}(n)|^2$$

Motivation	Formulation	Algorithms	Discussion
00000000	000●	000000	000000

By the way,

where

$$\boldsymbol{R}_{n} = \begin{bmatrix} r_{11}(n) & r_{12}(n) & \cdots & r_{1M}(n) \\ r_{21}(n) & r_{22}(n) & \cdots & r_{2M}(n) \\ \vdots & \vdots & \ddots & \vdots \\ r_{M1}(n) & r_{M2}(n) & \cdots & r_{MM}(n) \end{bmatrix}_{M \times M}, \quad (1)$$
$$\boldsymbol{\Gamma}_{n} = \begin{bmatrix} \gamma_{11}(n) & \gamma_{12}(n) & \cdots & \gamma_{1M}(n) \\ \gamma_{21}(n) & \gamma_{22}(n) & \cdots & \gamma_{2M}(n) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{M1}(n) & \gamma_{M2}(n) & \cdots & \gamma_{MM}(n) \end{bmatrix}_{M \times M}, \quad (2)$$
$$\boldsymbol{n} = -(N-1), \cdots, 0, \cdots, N-1.$$

Motivation	Formulation	Algorithms	Discussion
0000000	0000	●00000	000000
The Algorithms			

The matrix form

$$\begin{aligned} \mathcal{E} &= \alpha_0^2 \| \mathbf{R}_0 - N \mathbf{I}_M \|_F^2 + \beta_0^2 \| \mathbf{\Gamma}_0 \|_F^2 \\ &+ 2 \sum_{n=1}^{N-1} \alpha_n^2 \| \mathbf{R}_n \|_F^2 + \beta_n^2 \| \mathbf{\Gamma}_n \|_F^2 \\ &= \sum_{n=-(N-1)}^{N-1} \alpha_n^2 \| \mathbf{R}_n - N \mathbf{I}_M \delta_n \|_F^2 + \sum_{n=-(N-1)}^{N-1} \beta_n^2 \| \mathbf{\Gamma}_n \|_F^2. \end{aligned}$$

・ロト ・ 日 ・ ・ 王 ・ 王 ・ 王 ・ ハヘ · 15/26

Motivation	Formulation	Algorithms	Discussion
		00000	

Parseval-type equality:

$$\mathcal{E} = \frac{1}{2N} \sum_{p=1}^{2N} \| \Phi_r(\omega_p) - \alpha_0 N I_M \|_F^2 + \| \Phi_\gamma(\omega_p) \|_F^2$$

$$\Phi_{r}(\omega) = \sum_{n=-(N-1)}^{N-1} \alpha_{n} R_{n} e^{-jn\omega},$$
$$\Phi_{\gamma}(\omega) = \sum_{n=-(N-1)}^{N-1} \beta_{n} \Gamma_{n} e^{-jn\omega},$$
and $\omega_{p} = \frac{2\pi}{2N} p$ for $p = 1, \cdots, 2N$

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク へ で 16/26

Motivation	Formulation	Algorithms	Discussion
00000000	0000	000000	000000

Consequently,

$$\begin{split} \boldsymbol{\Phi}_{r}(\omega_{p}) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \boldsymbol{A}(\omega_{p} - \psi) \; \boldsymbol{\chi}(\psi) \boldsymbol{\chi}^{H}(\omega) \; d\psi \\ &= \tilde{\boldsymbol{\chi}}^{T}(\omega_{p}) \boldsymbol{A} \tilde{\boldsymbol{\chi}}^{*}(\omega_{p}) = (\tilde{\boldsymbol{\chi}}^{H}(\omega_{p}) \boldsymbol{A} \tilde{\boldsymbol{\chi}}(\omega_{p}))^{T} \\ \boldsymbol{\Phi}_{\gamma}(\omega_{p}) &= \tilde{\boldsymbol{\chi}}^{T}(\omega_{p}) \boldsymbol{B} \tilde{\boldsymbol{\chi}}(\omega_{p}). \end{split}$$

where,
$$\tilde{\boldsymbol{\chi}}^{T}(\omega_{p}) = [\tilde{\boldsymbol{x}}(0)e^{-j0\omega_{p}}\cdots \tilde{\boldsymbol{x}}(N-1)e^{-j(N-1)\omega_{p}}]^{T}$$

and, $\tilde{\boldsymbol{x}}(n) = [x_{1}(n) x_{2}(n) \cdots x_{M}(n)]^{T}$.

The reduced criterion

$$\mathcal{E} = \frac{1}{2N} \sum_{\rho=1}^{2N} \|\tilde{\boldsymbol{\chi}_{\rho}}^{H} \boldsymbol{A} \tilde{\boldsymbol{\chi}_{\rho}} - \alpha_{0} N \boldsymbol{I}_{M}\|_{F}^{2} + \|\tilde{\boldsymbol{\chi}_{\rho}}^{T} \boldsymbol{B} \tilde{\boldsymbol{\chi}_{\rho}}\|_{F}^{2}.$$

Motivation	Formulation	Algorithms	Discussion
		000000	

Going down from quartic to quadratic:

$$\mathcal{E} = \frac{1}{2N} \sum_{p=1}^{2N} \operatorname{tr} \left[(\tilde{\chi_p}^H \boldsymbol{A} \tilde{\chi_p} - \alpha_0 N \boldsymbol{I}_M)^H \\ \times (\tilde{\chi_p}^H \boldsymbol{A} \tilde{\chi_p} - \alpha_0 N \boldsymbol{I}_M) \right] + \operatorname{tr} \left([(\tilde{\chi_p}^T \boldsymbol{B} \tilde{\chi_p})^H (\tilde{\chi_p}^T \boldsymbol{B} \tilde{\chi_p})] \right) \\ \leq \frac{1}{2N} \sum_{p=1}^{2N} \|\boldsymbol{A}\|_F^2 \|\tilde{\chi_p}\|_F^4 - 2\alpha_0 N \|\boldsymbol{A}\|_F \|\tilde{\chi_p}\|_F^2 \\ + \alpha_0^2 N^2 M + \|\boldsymbol{B}\|_F^2 \|\tilde{\chi_p}\|_F^4 \\ = \frac{\|\boldsymbol{A}\|_F^2 + \|\boldsymbol{B}\|_F^2}{2N} \times \\ \sum_{p=1}^{2N} \left(\|\tilde{\chi_p}\|_F^2 - \frac{\alpha_0 N \|\boldsymbol{A}\|_F}{\|\boldsymbol{A}\|_F^2 + \|\boldsymbol{B}\|_F^2} \right)^2 + \operatorname{const.}$$

Motivation	Formulation	Algorithms	Discussion
		000000	

The reduced optimization problem

$$\min_{\tilde{\chi_{\rho}}, \mathbf{v}_{\rho}} \qquad \sum_{p=1}^{2N} \|\tilde{\chi_{\rho}} - \mathbf{V}_{\rho}\|_{F}^{2}$$
s.t.
$$|x_{m}(n)| = 1, \ \|\mathbf{V}_{\rho}\|_{F}^{2} = \kappa$$

where $\kappa = \frac{\alpha_0 N \|\boldsymbol{A}\|_F}{\|\boldsymbol{A}\|_F^2 + \|\boldsymbol{B}\|_F^2}$ which can be solved in a cyclic way.

Note

Both criterions are "almost equivalent" to each other in the sense that if one takes on a small value, so does the other; particularly, the quadratic terms become zero if the above is zero, and vice versa.

0000000	0000	000000	000000
Redefine t	he problem: G-WeCAN		
	$f_{ ho} = [e^{-j\omega_{ ho}}]$	$\cdots e^{-j2N\omega_{\rho}}]^{T},$	

Algorithm

$$\begin{aligned} \mathbf{f}_{p} &= [\mathbf{e}^{-j\omega_{p}} \cdots \mathbf{e}^{-j2N\omega_{p}}] \\ \mathbf{F} &= [\mathbf{f}_{1} \cdots \mathbf{f}_{2N}], \\ \mathbf{\bar{X}} &= [\mathbf{X} \ \mathbf{0}]_{M \times 2N}^{T}, \\ \mathbf{V} &= [\mathbf{v}_{1} \cdots \mathbf{v}_{2N}]^{T} \end{aligned}$$

where v_i is the *i*th column of V_p .

$$\min_{\substack{\{x_m(n)\}_{n=0,m=1}^{N-1,M}, \\ \{v_p\}_{p=1}^{2N} \\ \text{s.t.} } \left\| \boldsymbol{F}^H \bar{\boldsymbol{X}} - \boldsymbol{V} \right\|_F^2 \\ x_m(n) = 1, \ \| \boldsymbol{V}_p \|_F^2 = \kappa$$

Can be solved using cyclic algorithms.

Numerical E	vamplas		
			000000
Motivation	Formulation	Algorithms	Discussion

Experimental setup - I

Consider sequence length N = 128 is employed to estimate a SL and WL system with L = 24.

Figure: (a) Variance of the estimation error obtained when identifying the impulse response $\{h(n)\}_{n=0}^{23}$ of a SL system and (b) Variance of estimation error when identifying the responses $\{h_1(n)\}_{n=0}^{23}$ and $\{h_2(n)\}_{n=0}^{23}$ of a widely linear system.

Motivation	Formulation	Algorithms	Discussion
0000000	0000	000000	000000

Experimental setup - II

We generate sets of sequences with sequence length $N = \{10, 30, 100, 300, 1000\}$ and M = 3 for G-WeCAN to compare with CAN, WeCAN in terms of overall ISL metric.

Figure: Comparison of (a) ISL metric and (b) computation times for CAN, WeCAN and G-WeCAN sequence with $N = \{10, 30, 100, 300, 1000\}$ and M = 3.

24/26

Motivation	Formulation	Algorithms	Discussion
0000000	0000	000000	0000●0
Summarv			

Pros

- Cyclic algorithms to generate sets of unimodular sequences with good correlation and complementary correlation properties which is important for WL signal processing.
- Can be used to design very long sequences ($N \sim 10^5$) in a short period of time.

Con

• The matrices **A** and **B** give similar shapes to the correlation and complementary correlation of the final sequence sets. The algorithm fails when we use different specifications for **A** and **B** (future work).

Mo	tiva	itio	
	000	00	

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク へ ⁽⁾ 26/26

Thank you and Questions?