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DNN and DUN
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Signal Model

Sequence:
s=1[s1 89 - sN]TG(DN
Output:
y:AHa+e
where
51 0 oo 0 SN SN_1 -+ 8o
AH _ |52 51 0 sy
0 : : SN
SN Sn—1 -+ 81 0 0 e 0
o= [Oz() Q1 - OON—1 Q_N41 - a_l]T GCQN*l.

5/14



Problem Formulation

In the pulse compression stage, using an MF:
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f(s) 2 >0 |87 Tyl - sfiBs  d(s)

6/14



Problem Formulation

In the pulse compression stage, using an MF:

|s"y? s As , n(s)

f(s) 2 >0 |87 Tyl - sfiBs  d(s)

The optimization problem:
st As
max

s slBs
st. Isg|l =1, ke{l,...,N}
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Problem Formulation (Contd.)

Unimodular quadratic program (UQP):
max sys
S

st. |skl=1, ke{l,...,N}.

[1] M. Soltanalian et al. “Joint design of the receive filter and transmit
sequence for active sensing”, IEEE Signal Processing Letters, vol. 20, no. 5,
pp. 423-426, May 2013. 7/14



Problem Formulation (Contd.)

Unimodular quadratic program (UQP):

max sflxs

st. |skl=1, ke{l,...,N}.
Power method like iterations (PMLI)!1:

min Hs(”‘H) — Xs(”)
s(n+1)

s.t. ’s,(cnﬂ)‘ =1,VEk
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Problem Formulation (Contd.)

Unimodular quadratic program (UQP):

max sflxs

st. |skl=1, ke{l,...,N}.
Power method like iterations (PMLI)!1:

n)

min Hs(”‘H) — Xs(
s(n+1)
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27

Analytical solution:

(1) — giarg(xs™)
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Fully Connected DNN

Let,

9o (z) = a(u)

where u = Wz, ¢; = {W,}, and a(-) denotes a non-linear
activation function

Given an input xg, the dynamics of a fully connected DNN with L
layers:

xp = F (z0;Y) = Gpr1©9py 500 §¢0($0),
Y = {¢:}

PMLI: S(z) £ ¢l el®)

PMLI are perfect candidates for unfolding onto a DUN
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Deep Evolutionary Cognitive Radar (DECoR)
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Deep Evolutionary Cognitive Radar (DECoR)

Let,

9¢:(2) = S(u)

where u = x;z and ¢; = {x;}
The dynamics of DECoR for L layers:

sL=¢ (30; Q) =9¢r1°9¢_2° " O Ggp (30)
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Figure: The proposed DECoR architecture for adaptive radar waveform
design
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DECoR Learning Algorithm

Step 0: (Initialization): Choose unimodular transmit sequence sg € CN, sett =0,0 =¢, 6 € (0,1],

Q) = {X(0>},;1 such that xE[)) >0 forie {0,...,L —1}.

Step 1: (Random walk- generation): For I € {0,...,L — 1} and 2 € {0,..., B — 1} generate

D; € €N XN a5 the set of Hermitian positive-definite search direction matrices.

Step 2: (Random walk- perturbation): For ¢ € {0, ..., B — 1}, form the parameter space Q(®) as

Q(t) {x<t)+D0, R X(Lf)71+Di 1} Compute s( ). = G(s0; Qgt)) fori € {0,...,B}
t t

and S(V) = {sg’)o, P S(L)B 1

Step 3: (Collecting information): Transmit S() and obtain Y = {yét), e y 1 }. Compute

f(s) for each transmit/receive pair (sg)i, ygt)) and construct F = {f(sg)i)}izgl.

Step 4: (Optimizing the DECoR architecture): Choose 1,

i, = arg max f(sg)i).
i€[B] ’

Update the network parameters if f(sg)i*) > f( 1)) and set o < c. Otherwise, only update
the search radius as o <— do. Continue the online Iearnmg by going to Step 1.
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Numerical Examples
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Training lterations

Figure: The objective value f(sy) of the DECoR vs. training iterations
for a code length of N =10
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Numerical Examples (contd.)
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Figure: MSE values obtained by the different design algorithms for code
lengths NV € {10, 25, 50, 100, 200}.
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@ In order to design cognitive radar waveforms, we bridge the
gap between model-based and data driven techniques and
propose a methodology to unfold the PMLI to solve a UQP

@ Although the DECoR framework does not have access to the
statistics of the environmental parameters, it is able to learn
them by exploiting the observed data from interaction with
the environment.
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Questions?
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