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One-Bit Compressive Sensing

How Compressive Sensing (CS) interacts with a one-bit quantizer?

Why?
– The analysis shifts the focus to bits instead of measurements.
– One-bit quantizer is an extremely simple and fast device.
– Fast quantizer allows the compressive acquisition system to take many more

measurements.
– The reconstruction algorithms and the theory are very useful in recovering signals from

non-linearly distorted measurements.
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Problem Formulation

One-bit CS acquires a sparse signal x using

r = sign (Φx)

Non-convex problem:

min
x
‖x‖0

s.t. r = sign (Φx)

Consistency Principle: RΦx � 0 [R = Diag (r)]
Non-convex `1-minimization problem on a unit sphere

min
x
‖x‖1,

s.t. RΦx � 0, ‖x‖2 = 1
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Prior Works

Regularized problem:

x̂ = arg min
x
‖x‖1 + αR(RΦx)

s.t. ‖x‖2 = 1.

Relevant algorithms:
Renormalized Fixed Point Iteration (RFPI) uses a convex barrier function as a
regularizer for the consistency principle.
Restricted Step Shrinkage (RSS) utilizes a nonlinear barrier function as the
regularizer.
Binary Iterative Hard Thresholding (BIHT) introduces a penalty-based robust
recovery algorithm.
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The RFPI algorithm

Optimization steps:

di = ∇
x
R(y)

∣∣
x=xi−1

= − (RΦ)T ρ (RΦxi−1) ,

ti =
(

1 + δdT
i xi−1

)
xi−1 − δdi ,

vi = sign (ti )� ρ (|ti | − (δ/α)1) ,

xi =
vi
‖vi‖2

.

where, ρ(y) , ReLU(−y) = max{−y , 0}.

Limitations:
initial point x0

step-size δ
shrinkage threshold τ = δ/α

Solution
Deep unfolding can help tuning these parameters by learning from the data.
We define a decoder function based on the unfolded iterations, and seek to jointly
learn the parameters of the proposed autoencoder.
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Autoencoder (AE)

An AE is a generative model comprised of an encoder and a decoder module that
are sequentially connected together.

Encoder: f Encoder
Υ1

: Rn 7→ Rm

Decode: f Decoder
Υ2

: Rm 7→ Rn

x̂ = f Decoder
Υ2

◦ f Encoder
Υ1

(x)
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One-bit Compressive Sensing Autoencoder

Objective:
Design Φ that best captures the information of a K-sparse signal x.
Learn the parameters of the iterative algorithm.

Encoder:

f Encoder
Υ1

(x) = ˜sign(Φx) [ ˜sign(x) = tanh(c · x), c > 0]

Decoder: Define, gφi : Rm 7→ Rn, φi = {τi , δi}

gφi (z; Φ,R) =
v
‖v‖2

, with

v = ˜sign (t)� ρ (|t| − τi ) ,

t =
(

1 + δi dT z
)

z − δi d ,

d = − (RΦ)T ρ (RΦz)

f Decoder
Υ2

(z0) = gφL−1 ◦ gφL−2 ◦ · · · ◦ gφ1 ◦ gφ0 (z0; Φ,R),
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Loss Function and Training

Proposed loss function:

G(x; x̂) =
L−1∑
i=0

wi ||x − g̃i (xi )||22︸ ︷︷ ︸
accumulated MSE loss of all layers

+

λ

L−1∑
i=0

ReLU(−[δ]i ) + λ

nL−1∑
i=0

ReLU(−[τ ]i )︸ ︷︷ ︸
regularization term for the step-sizes and shrinkage thresholds

where λ > 0, [δ]i = δi , and τ = [τ T
0 , . . . , τ

T
L−1].
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Numerical Simulations

Specifications:
x ∈ R128, ‖x‖2 = 1
L = 30
Φ ∈ R512×128

Test Scenarios:
1 Case 1: The RFPI algorithm with a randomly generated sensing matrix whose

elements are i.i.d and sampled from N (0, 1), and fixed values for δ, and α.
2 Case 2: The RFPI algorithm where the learned Φ is utilized and the values for δ

and α are fixed as the previous case.
3 Case 3: The RFPI algorithm with a randomly generated Φ (same as Case 1),

however, the learned shrinkage thresholds vector {τi}L−1
i=0 is utilized with a fixed

step size.
4 Case 4: The proposed one-bit CS AE method with the learned Φ, {δi}L−1

i=1 , and
{τi}L−1

i=0 .
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Numerical Simulations (contd.)
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Figure: The performance of the proposed method compared to the RFPI algorithm for sparsity
levels: (a) K = 16, and (b) K = 24.
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Discussion

We proposed a hybrid model-based data-driven approach that exploits the
existing domain knowledge.
We unfold state-of-the-art method called RFPI onto the layers of a deep
architecture to learn the sensing matrix and also the optimization parameters.
Our proposed method achieves high accuracy very quickly.
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Thank you
and

Questions?

B: skhoba2@uic.edu

skhoba2@uic.edu
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