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One-Bit Compressive Sensing

@ How Compressive Sensing (CS) interacts with a one-bit quantizer?
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Motivation
o

One-Bit Compressive Sensing

@ How Compressive Sensing (CS) interacts with a one-bit quantizer?
o Why?

— The analysis shifts the focus to bits instead of measurements.
— One-bit quantizer is an extremely simple and fast device.

— Fast quantizer allows the compressive acquisition system to take many more
measurements.

— The reconstruction algorithms and the theory are very useful in recovering signals from
non-linearly distorted measurements.
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Problem Formulation

@ One-bit CS acquires a sparse signal x using

r = sign (®x)
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Problem Formulation

@ One-bit CS acquires a sparse signal x using
r = sign (®x)
o Non-convex problem:
min ||x||o
x

s.t. r =sign(®x)

o Consistency Principle: R®x = 0 [R = Diag (r)]

@ Non-convex ¢1-minimization problem on a unit sphere
min ||x||1,
X

st. Rex =0, |x]2=1
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Prior Works

Regularized problem:
% = argmin ||x||1 + @R(R®x)
X

st [|x|l2 = 1.
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Prior Works

Regularized problem:
% = argmin ||x||1 + @R(R®x)
X
st x| =1.

Relevant algorithms:
@ Renormalized Fixed Point Iteration (RFPI) uses a convex barrier function as a
regularizer for the consistency principle.
o Restricted Step Shrinkage (RSS) utilizes a nonlinear barrier function as the
regularizer.

@ Binary Iterative Hard Thresholding (BIHT) introduces a penalty-based robust
recovery algorithm.
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Problem
[e]e] J

The RFPI algorithm

Optimization steps:

di = VR(y)| =—(R®)" p(R®x;_1),

X=Xj_1
ti = (1 =+ 5d,-TX,',1) Xi—1 — (Sd,'7
vi = sign () © p(Iti] — (6/a)1),

Vi

il

Xj

where, p(y) £ ReLU(—y) = max{—y, 0}.
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@ initial point xg
@ step-size §

o shrinkage threshold 7 = ¢/«
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The RFPI algorithm

Optimization steps:
d=VR()|,_, =~ (R®) p(REx1),
X =
ti = (1 + 5diTX,',1) xi—1 — od;,
vi = sign () © p (Iti| — (6/a)1),

Vi

X = .
[lvill2

where, p(y) £ ReLU(—y) = max{—y, 0}.

Limitations:
@ initial point xg
@ step-size §

o shrinkage threshold 7 = ¢/«

@ Deep unfolding can help tuning these parameters by learning from the data.

We define a decoder function based on the unfolded iterations, and seek to jointly
learn the parameters of the proposed autoencoder.
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Solution
000

Autoencoder (AE)

El—’ Encoder | Latent space » Decoder

@ An AE is a generative model comprised of an encoder and a decoder module that
are sequentially connected together
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Solution
000

Autoencoder (AE)

El—’ Encoder | Latent space » Decoder

@ An AE is a generative model comprised of an encoder and a decoder module that
are sequentially connected together.

@ Encoder: f%’lmde' :R"— R™

Decode: ﬁ?:wder :R™— R"

& — fDecoder Encoder
° k= fy® o f1%°%r(x)
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(o] le]

One-bit Compressive Sensing Autoencoder

Objective:
o Design ® that best captures the information of a K-sparse signal x.

o Learn the parameters of the iterative algorithm.
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Solution
(o] le]

One-bit Compressive Sensing Autoencoder

Objective:
o Design ® that best captures the information of a K-sparse signal x.
o Learn the parameters of the iterative algorithm.
Encoder:
f-%’;mde'(x) = sign(®x) [sign(x) = tanh(c - x),c > 0]

Decoder:  Define, gy, : R” — R", ¢; = {77,6;}

84,(z;®,R) = Y with

lIvll2"
v =sign(t) © p(|t| —77),
t=(1+06d"z)z-dd,
d=—(R®)" p(R®z)

f%ZCOder(ZO) = 8p_1©8p_» 0 " O 8¢ O 8¢ (z0;®, R),
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Solution
ooe

Loss Function and Training

Proposed loss function:

L—1
G(x; %) = Z willx — & (x)l3  +
i=0

accumulated MSE loss of all layers

L—1 nL—1
A ReLU(=[0]:) + A Y ReLU(~[r]y)
i=0 i=0

regularization term for the step-sizes and shrinkage thresholds

where A > 0, [8]; = §;, and T = [T0T7 e 77'LT,1]-
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Numerical Simulations

Specifications:
o x ERZB, x| =1
e L =30
o & c R512x128
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Discussion
@000

Numerical Simulations

Specifications:

x € R, x| =1
L=30
& c R512x128

Test Scenarios:

]

(2]

Case 1: The RFPI algorithm with a randomly generated sensing matrix whose
elements are i.i.d and sampled from A/(0, 1), and fixed values for §, and .

Case 2: The RFPI algorithm where the learned @® is utilized and the values for ¢
and « are fixed as the previous case.

Case 3: The RFPI algorithm with a randomly generated ® (same as Case 1),

however, the learned shrinkage thresholds vector {T;}I.L:_Ol is utilized with a fixed

step size.
Case 4: The proposed one-bit CS AE method with the learned ®, {6,-},4;11, and

L—1
{7 im0 -
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Numerical Simulations (contd.)

Number of Layers L - 30 - Sparsity Level K = 16

Number of L.

Discussion
[e] lele)

ayers L - 30 - Sparsity Level K — 21
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Figure: The performance of the proposed method compared to the RFPI algorithm for sparsity

levels: (a) K =16, and (b) K = 24.

11/13



Discussion
[e]e] o)

Discussion

@ We proposed a hybrid model-based data-driven approach that exploits the
existing domain knowledge.

@ We unfold state-of-the-art method called RFPI onto the layers of a deep
architecture to learn the sensing matrix and also the optimization parameters.

@ Our proposed method achieves high accuracy very quickly.
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Thank you
and
Questions?

=: skhoba2@uic.edu
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