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ABSTRACT

Sequences with good correlation properties form an integral
part of many active sensing and communication systems. Al-
though polyphase sequence sets with optimal peak sidelobe
level (PSL) growth have been known for years, it has been
a long-standing problem to construct polyphase sequences
with small PSL growth. In this paper, we introduce a new
polynomial-time construction approach to design polyphase
sequences with optimal PSL growth from sequence sets with
small cross-correlation. The proposed construction approach
is based on the observation that if the PSL of the sequence
set grows optimally, the constructed polyphase sequence will
also enjoy an optimal correlation sidelobe growth. Several
numerical examples are provided to illustrate the performance
of the construction method.

Index Terms— Correlation, peak sidelobe level (PSL),
polyphase sequences, sequence design.

1. INTRODUCTION AND PROBLEM
FORMULATION

Sequences with small correlation are often required in many
communication systems, range compression and active sens-
ing applications [1, 2]. There is an extensive literature avail-
able on designing families of sequence sets with small corre-
lation properties [3–7]. However, there is very little progress
on the analytical design of sequences (and not sets)— a
problem that is deemed to be difficult from a computational
viewpoint [8]. In particular, it is regarded as computation-
ally impractical to perform exhaustive search over a set of
polyphase sequences with very large cardinality. In this
paper, we propose a polynomial-time efficient method of
constructing polyphase sequences with optimal PSL growth
from a known sequence sets with small correlation property.

The k-th aperiodic auto-correlation for any sequence x =
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[x1 x2 · · · xN ]T is given as

cx(k) =

N−k∑
n=1

xnx
∗
n+k, k ∈ {0, · · · , N − 1}, (1)

where (·)∗ denotes the complex conjugate for scalers and
the conjugate transpose for vectors and matrices. Binary
sequences with xn = ±1 having low sidelobes have been
studied in the literature extensively (known as Barker se-
quences [9]), with |cx(k)| ≤ 1, and are known for a few
finite lengths. The Barker condition can be extended to the
sequences where the entries are of the form xn = e2πiNn/K

where i2 = −1, drawn from a fixed alphabet set of cardinality
K. The more general setting allows for polyphase sequences,
where the entries of x lie on the unit circle in the complex
plane.

LetX be a set ofM sequences denoted as {xm(n)}M,N
m,n=1

each of which is of lengthN and constrained to have the same
finite energy, i.e.

N∑
n=1

|xm(n)|2 = N, m ∈ {1, · · · ,M}. (2)

From this point onward we represent {xm(n)}Nn=1 simply by
its vector notation xm. The aperiodic cross-correlations of
the sequences xp and xq from the set X at shift k are defined
as

rX;pq(k) ,
N∑

l=k+1

xp(l)x
∗
q(l − k) = r∗pq(−k)

p, q ∈ {1, · · · ,M}, k ∈ {0, · · · , N − 1}, (3)

The aperiodic auto-correlation of xm ∈ X can be obtained
from (3) by considering p = q = m. In this context, we con-
struct the correlation matrixRX;k for k-th lag using rX;pq(k)
such that,

RX;k =


rX;11(k) rX;21(k) . . . rX;M1(k)
rX;12(k) rX;22(k) . . . rX;M2(k)

...
...

. . .
...

rX;1M (k) rX;2M (k) . . . rX;MM (k)



81978-1-5090-5990-4/17/$31.00 ©2017 IEEE GlobalSIP 2017



k = −N + 1, · · · , 0, · · · , N − 1. (4)

Using the “shift matrix”,

Jk =


k+1︷ ︸︸ ︷

0 · · · 1 0
. . .

1
0



T

N×N

(5)

= JT−k, k = 0, · · · , N − 1

we can rewriteRX;k as

RX;k = X∗JkX = R∗X;−k, k = 0, · · · , N − 1 (6)

There exists a rich literature [7, 10, 11] on generating
sequence sets that asymptotically meet periodic correlation
bounds. However, the aperiodic case is considered to be more
difficult, though interesting. In the sequel, we address the
well established problem of designing methods of polyphase
sequence sets whose out-of-phase (i.e. with k 6= 0) aperiodic
auto-correlations lags are, collectively, small. One of the sev-
eral important measures of “smallness” is the Peak Sidelobe
Level (PSL) of the sequence set X defined as,

PX , max
p,q
{|rX;pq(k)|},

p, q ∈ {1, · · · ,M}
and k ∈ 0, · · · , N − 1 (k 6= 0 if p = q) (7)

which is the most relevant to our analysis.
The Welch bounds [12] are the most well-known theoret-

ical limits on the collective smallness of correlation values of
the sequence sets. The Welch lower bound of PSL is given as,

PX ≥ N
√

M − 1

2NM −M − 1
, BPX

. (8)

We assume that 2 ≤ M � N and that M behaves as O(1)
with respect to the sequence length N . Note that, the above
lower bound can be achieved conveniently by the well-known
analytically-built sequence sets, or by using computational
design frameworks such as CAN introduced in [4]. Keeping
that in mind, from (8) it is not difficult to observe that for an
X meeting the Welch bound, and as N grows large,

PX .
1√
2

√
N, (9)

which implies that the PSL of the sequence set X behaves as
O(
√
N) as N →∞ [12].

2. PROPOSED METHOD OF CONSTRUCTION

Let s be a polyphase sequence with entries {s(n)}Nn=1. We
design s as a linear combination of the sequence set X (rep-

resented as a matrix) and a weighted multiplier φ, i.e.

s =

M∑
m=1

φ(m)xm = Xφ (10)

where φ ∈ CM is a column vector denoted as {φ(m)}Mm=1.
Note that s∗s = N . The aperiodic auto-correlation lags of s
at shift k are given as,

rs(k)

,
N∑

l=k+1

s(l)s∗(l − k)

=

M∑
p=1

M∑
q=1

(
φ(p)φ∗(q)

N∑
l=k+1

xp(l)x
∗
q(l − k)

)
. (11)

Now one can deduce from (11) that,

|rs(k)| ≤
M∑
p=1

M∑
q=1

|φ(p)| |φ∗(q)|
∣∣rXpq(k)

∣∣
≤max

p,q
{|rXpq(k)|}

(
M∑
p=1

M∑
q=1

|φ(p)||φ∗(q)|

)
≤ PX ‖φ‖21. (12)

Combining (9) and (12), we can say that the PSL of polyphase
sequence s is bounded as

Ps .
‖φ‖21√

2

√
N. (13)

Now observe that,

[X∗X]p,q =

{
N p = q
αp,q p 6= q

p, q ∈ {1, 2, · · · ,M}. (14)

In other words, X∗X can be written as a summation of two
M ×M matrices, viz.

X∗X , NIM +Q. (15)

Also note that, according to (8), for a sequence setX achiev-
ing the Welch bound,

|αp,q| ≤ N
√

M − 1

2NM −M − 1
. (16)

Thus, from (15) and (16), we can conclude that,

‖Q‖F ≤ N

√
(M2 −M)

(
M − 1

2NM −M − 1

)
, (17)
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where ‖ · ‖F represents the Frobenius norm of the matrix ar-
gument.

LetX = UΣV ∗ represent the Singular Value Decompo-
sition (SVD) of X , where U and V are unitary matrices of
size N × N and M ×M , respectively, and Σ is an N ×M
diagonal matrix. {σm}Mm=1 denote the singular values of X .
Note that,

X∗X = V Σ2V ∗ (18)

As a result, from (15) and (18)

|σm|2 = eTmΣ2em = N + eTmV
∗QV em. (19)

where em denotes the m-th standard basis vector of CN . It is
clear from (17) that

|eTmV HQV em| ≤ N

√
M(M − 1)2

2NM −M − 1
.

Consequently, it can be easily verified that

|σm|2 ≥ N −N

√
M(M − 1)2

2NM −M − 1
. (20)

Further observe that,

‖X+‖2F =

M∑
m=1

1

|σm|2

≤ M

N −N
√

M(M − 1)2

2NM −M − 1

(21)

where X+ is the Moore–Penrose pseudoinverse of X , de-
fined as

X+ , (X∗X)−1X∗. (22)

Hence, by definitionXX+ is Hermitian, andX+X = IM .
Thus, from (10) we conclude that φ = X+s, and there-

fore,

‖φ‖22 ≤ ‖X+‖2F ‖s‖22

≤ M

1−
√

M(M − 1)2

2NM −M − 1

. (23)

Note that, according to the Cauchy-Schwarz inequality,(
M∑
m=1

|φ(m)|

)2

≤

(
M∑
m=1

|φ(m)|2
)(

M∑
m=1

12

)
. (24)

It follows from the above that

‖φ‖1 ≤M
√√√√√ 1

1−
√

M(M − 1)2

2NM −M − 1

. (25)

Now, it is not hard to verify that the upper bound above con-
verges toM asN →∞ showing that µ behaves asO(1) with
respect to the sequence length N , as N grows large. Hence
from (13) we can conclude that Ps behaves like O(

√
N).

Considering X as a basis with good correlation proper-
ties, we can think of designing {s(n)}Nn=1 by solving the fol-
lowing minimization criterion:

min
{s(n)}Nn=1;{φ(m)}Mm=1

f = ‖Xφ− s‖22

s.t. s ∈ Ω, (26)

where

φ = [φ(1) φ(2) · · · φ(M)]T ,

s = [s(1) s(2) · · · s(N)]T ,

Ω is the set of polyphase sequences, andX is aN×M matrix.
A natural approach to tackle the “nearest-vector” op-

timization problem in (26) is to use cyclic minimization.
Namely, we first fix s and compute the optimum φ̂ that min-
imizes f , which can be handled by using the least-squares
solution:

φ̂ = X+s. (27)

Next, we fix φ and the optimum minimizer ŝ of (26) can be
obtained as

ŝ = SGN(Xφ) (28)

where SGN(·) is the signum function defined on vector/matrix
arguments. On the other hand, one can also tackle (26) di-
rectly (not in a cyclic manner) by substituting (27) in the
original objective function, leading to:

min
{s(n)}Nn=1

‖XX+s− s‖22 (29)

The objective function in (29) can be simplified as,

‖XX+s− s‖22
= (XX+s− s)∗(XX+s− s)
= s∗XX+XX+s + s∗s − 2s∗XX+s

= − s∗XX+s + N. (30)

As a result, the minimization problem in (29) can be alterna-
tively described as,

max
s∈Ω

s∗XX+s (31)

where the quadratic term XX+ is rank deficient. Note
that, in general, the maximization of a full-rank semi defi-
nite quadratic form over a polyphase sequence is NP-hard.
However, for rank deficient quadratic forms, the optimiza-
tion problem can be solved with polynomial complexity with
respect to the sequence length N as described in [13,14]. Es-
pecially, [14] shows a construction algorithm with aO(N2M )
computational cost.
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Fig. 1. The PSL growth of constructed binary sequences vs. length N obtained from different sequence families: (a) Gold
sequence and (b) Kasami sequence,

3. NUMERICAL RESULTS

In this section, we present several examples to investigate the
performance of our construction approach. We construct new
polyphase sequences from the well-known sequence sets with
low cross-correlation such as Gold and Kasami sequence fam-
ilies for allowable values of sequence length. We compare the
PSL growth of obtained optimal sequences using (31) with a√
N growth, where N is the sequence length. Moreover, the

CAN algorithm of [4] is used to lower the PSL of the obtained
sequences even further. It is worth noting that, the CAN algo-
rithm, by itself, is not able to find polyphase sequences with
a similar optimal PSL growth.

Fig. 1 shows the optimal PSL growth Popt of the ob-
tained sequences. It is evident from the figures that the value
Popt/

√
N indeed remains near-constant. Moreover, Fig. 1

depicts the PSL growth of randomly generated Pseudo-
Noise (PN) sequences of same length which, showing an
O(
√
N lnN) growth.

4. DISCUSSION AND FUTURE WORK

In this paper, we presented a polynomial-time approach to the
construction of polyphase sequences. We aimed at generating
sequences that has good auto-correlation, and also has an op-
timal sidelobe growth in an asymptotic sense. This approach
can be used to design very long sequences (of length up to
N ∼ 212)— owing to fast computational approaches such as
the CAN algorithm, and particularly, the polynomial-time na-
ture of the proposed approach. Several numerical examples
were presented to demonstrate the performance of the con-
struction approach.
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