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Abstract—Unimodular sequences with good correlation prop-
erties have attracted significant research interest due to their
applications in several areas such as radar sensing and commu-
nications. In this paper, we address the problem of designing uni-
modular sequence sets with good correlation and complementary
correlation properties using generalized cyclic algorithms for the
minimization of weighted integrated sidelobe level (WISL) based
metrics. The set of sequences are obtained by considering their
complete second-order characterization, which has been proven
to be beneficial for identification and sensing systems employing
widely linear signal processing. Several numerical examples have
been presented to illustrate the performance of the proposed
algorithms.

Index Terms—Auto-correlation, cyclic algorithms, integrated
sidelobe level, unimodular sequences, waveform design.

I. INTRODUCTION

The design of unimodular sequence sets with good correla-

tion properties has been studied extensively in the recent years

due to their applications in various fields such as radar [1] and

sonar signal design [2], [3], channel estimation, system identi-

fication, medical imaging and telecommunications [4], among

others. Considerable efforts have been made to generate such

sets of sequences using several methods, including alternating

projections [5], [6], majorization-minimization techniques [7],

[8] and quasi-Newton methods [9], all by minimizing the

qualitative metrics based on the peak sidelobe level (PSL) or

the integrated sidelobe level (ISL) [10]–[15]. Such recently

developed methods rely on Fast Fourier Transform (FFT)

operation which makes the design very efficient.

Although the construction of sequences or sequence sets

with low sidelobe levels has been broadly addressed in the

literature [15]–[27], it should be noted that the aforementioned

methods only consider minimizing the contribution of the

periodic or aperiodic correlation functions for the out-of-phase

(k �= 0) coefficients based on the fact that the designed se-

quences will only be employed on strictly linear (SL) systems,

where only the correlation functions are observed. However,

by considering the complete second-order characterization, the

performence of the sensing and identification systems can be

* Corresponding author (e-mail: abose4@uic.edu). This work was sup-
ported in part by U.S. National Science Foundation Grant ECCS-1809225.

further enhanced by performing widely linear (WL) signal

processing, as shown in [28], [29]. Unlike SL systems, WL

systems exploit the complex conjugate of the input signal as an

additional degree of freedom for linear processing. Modeling

of systems using WL structures is quite common in wireless

systems, when non-linear radio frequency (RF) impairments

such as in-phase and quadrature-phase (I/Q) imbalances are

considered in the analysis of signal propagation [30]–[32].
In this paper, we consider the construction of sets of

unimodular sequences possessing good correlation as well as

good complementary correlation properties by promoting both

desired properties using cyclic algorithms.
Notation: We use bold lowercase letters for vectors and bold

uppercase letters for matrices. (·)∗, (·)T and (·)H denote the

complex conjugate, transpose and conjugate transpose of the

vector/matrix, respectively. ‖x‖n or the ln-norm of the vector

x is defined as {∑k |x(k)|n}
1
n where x(k) is the k-th entry

of x. ‖A‖F or the Frobenius norm of matrix A with entries

{ai(j)}m,ni=1,j=1 is defined as
√∑m

i=1

∑n
j=1 |ai(j)|2.

II. PROBLEM FORMULATION

Let {xm(n)}N−1,M
n=0,m=1 denote the set of M complex unimod-

ular sequences, each of length N , to be designed. We assume

that, xm(n) = ejφm(n) for all m,n and the phases {φm(n)}
can have arbitrary values from [−π, π]. The aperiodic cross-

correlation rm1m2
(n) and complementary cross-correlation

γm1m2(n) of any member sequences {xm1(k)}N−1
k=0 and

{xm2
(k)}N−1

k=0 at lag n are given as,

rm1m2(n) =
N−1∑
k=n

xm1(k)x
∗
m2

(k − n) = r∗m2m1
(−n) (1)

γm1m2(n) =

N−1∑
k=n

xm1(k)xm2(k − n) = γm2m1(−n) (2)

for n = 0, 1, · · · , N − 1. Note that, the auto-correlation

and complementary auto-correlation coefficients can also be

derived easily by using m1 = m2 = m.
In the case of SL signal processing, we design sequences

with good correlation properties by minimizing the following

criterion based on the ISL of the said sequences:
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ES �
M∑
m=1

N−1∑
n=−N+1
n �=0

|rmm(n)|2 (3)

+
M∑

m1=1

M∑
m2=1
m2 �=m1

N−1∑
n=−(N−1)

|rm1m2(n)|2.

To facilitate the discussion in the following, we

denote the sequence set in its matrix form, i.e.

X = [x1 x2 · · · xm · · · xM ]N×M where

xm = [xm(0) xm(1) · · · xm(N − 1)]T . Moreover, the

covariance and complementary covariance matrices of the

sequences are given for different lags as

Rn =

⎡
⎢⎢⎢⎣
r11(n) r12(n) · · · r1M (n)
r21(n) r22(n) · · · r2M (n)

...
...

. . .
...

rM1(n) rM2(n) · · · rMM (n)

⎤
⎥⎥⎥⎦
M×M

, (4)

Γn =

⎡
⎢⎢⎢⎣
γ11(n) γ12(n) · · · γ1M (n)
γ21(n) γ22(n) · · · γ2M (n)

...
...

. . .
...

γM1(n) γM2(n) · · · γMM (n)

⎤
⎥⎥⎥⎦
M×M

, (5)

where n = −(N − 1), · · · , 0, · · · , N − 1. Next, we consider

the problem of designing unimodular sequences with good

correlation as well as complementary correlation properties by

minimizing the following generalized weighted ISL (WISL)

criterion,

E �
M∑
m=1

N−1∑
n=−N+1
n �=0

α2
n|rmm(n)|2 (6)

+
M∑
m=1

N−1∑
n=−N+1

β2
n|γmm(n)|2

+

M∑
m1=1

M∑
m2=1
m2 �=m1

N−1∑
n=−(N−1)

α2
n|rm1m2(n)|2

+
M∑

m1=1

M∑
m2=1
m2 �=m1

N−1∑
n=−(N−1)

β2
n|γm1m2

(n)|2

where {αn}N−1
n=0 and {βn}N−1

n=0 are real-valued weights with

αn = α−n and βn = β−n. In this paper, we introduce a

generalized approach to minimize the criterion in (6) by using

the minimization techniques for ISL related metrics such as

CAN and WeCAN, introduced in [5], [11].

III. GENERALIZED WECAN

The Generalized WeCAN (G-WeCAN) algorithm is associ-

ated with the criterion E in (6), which can be written in matrix

form as,

E = α2
0‖R0 −NIM‖2F + β2

0‖Γ0‖2F (7)

+ 2
N−1∑
n=1

α2
n‖Rn‖2F + β2

n‖Γn‖2F

=
N−1∑

n=−(N−1)

α2
n‖Rn −NIMδn‖2F +

N−1∑
n=−(N−1)

β2
n‖Γn‖2F

where δn denotes the Kronecker delta. Furthermore, following

the proof in [5] for the case of M = 1, it can be shown that the

criterion in (7) can be equivalently written as a Parseval-type

equality:

E =
1

2N

2N∑
p=1

‖Φr(ωp)− α0NIM‖2F + ‖Φγ(ωp)‖2F (8)

in which,

Φr(ω) =
N−1∑

n=−(N−1)

αnRne
−jnω, (9)

Φγ(ω) =
N−1∑

n=−(N−1)

βnΓne
−jnω, (10)

and {ωp} are the Fourier frequencies given as, ωp =
2π
2N p for

p = 1, · · · , 2N .

Note that, by choosing αn and βn appropriately, we can help

shape the correlation lags in the desired form. Particularly for

convenience, we choose α0 and β0 large enough to ensure that

the matrices

A =

⎡
⎢⎢⎢⎣

α0 · · · αN−1

α1 · · · αN−2

...
. . .

...

αN−1 · · · α0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

β0 · · · βN−1

β1 · · · βN−2

...
. . .

...

βN−1 · · · β0

⎤
⎥⎥⎥⎦

(11)

become positive semidefinite (i.e. A � 0 and B � 0).

Now, note that the following discrete (inverse) Fourier

transform relations hold:

{αnRn} (I)DFT←−−→ Φr(ω) = A(ω) ∗ (χ(ω)χH(ω)) (12)

{βnΓn} (I)DFT←−−→ Φγ(ω) = B(ω) ∗ (χ(ω)χT (ω)) (13)

where,

χ(ω) =
N−1∑
n=0

x̃(n)e−jnω, (14)

A(ω) =

N−1∑
k=−(N−1)

αke
−jkω, (15)

B(ω) =

N−1∑
k=−(N−1)

βke
−jkω, (16)
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and x̃(n) = [x1(n) x2(n) · · · xM (n)]T . Consequently, one

can verify that,

Φr(ωp) =
1

2π

∫ π

−π
A(ωp − ψ) χ(ψ)χH(ω) dψ (17)

=
1

2π

∫ π

−π

N−1∑
k=−(N−1)

αke
−jk(ωp−ψ)χ(ψ)χH(ψ) dψ

=
N−1∑

k=−(N−1)

N−1∑
n=0

N−1∑
ñ=0

αkx̃(n)x̃
∗(ñ) e−jkωp

× 1

2π

∫ π

−π
ej(k−n+ñ)ψ dψ

=
N−1∑
n=0

N−1∑
ñ=0

αn−ñx̃(n)x̃∗(ñ)e−j(n−ñ)ωp

= χ̃T (ωp)Aχ̃∗(ωp) = (χ̃H(ωp)Aχ̃(ωp))
T

where, χ̃(ωp) = [x̃(0)e−j0ωp · · · x̃(N − 1)e−j(N−1)ωp ]T .

Similarly for Φγ(ωp), it can be given as

Φγ(ωp) = χ̃T (ωp)Bχ̃(ωp). (18)

Therefore, by denoting χ̃(ωp) simply as χ̃p, the criterion in

(8) can be rewritten as

E =
1

2N

2N∑
p=1

‖χ̃pHAχ̃p − α0NIM‖2F + ‖χ̃pTBχ̃p‖2F .

(19)

Note that the above function is quartic in {xm(n)}N−1,M
n=0,m=1,

which makes the optimization difficult. To facilitate a trans-

formation to a quadratic objective, we simplify (19) as

E =
1

2N

2N∑
p=1

tr
[
(χ̃p

HAχ̃p − α0NIM )H

×(χ̃pHAχ̃p − α0NIM )
]
+ tr

(
[(χ̃p

TBχ̃p)
H(χ̃p

TBχ̃p)]
)

≤ 1

2N

2N∑
p=1

‖A‖2F ‖χ̃p‖4F − 2α0N‖A‖F ‖χ̃p‖2F

+ α2
0N

2M + ‖B‖2F ‖χ̃p‖4F
=
‖A‖2F + ‖B‖2F

2N
×

2N∑
p=1

(
‖χ̃p‖2F −

α0N‖A‖F
‖A‖2F + ‖B‖2F

)2

+ const.

(20)

Next, instead of minimizing (20) with respect to

{xm(n)}N−1,M
n=0,m=1, we resort to the following minimization

problem:

min
χ̃p,vp

2N∑
p=1

‖χ̃p − vp‖2F (21)

s.t. |xm(n)| = 1, ‖vp‖2F = κ

where κ =
α0N‖A‖F

‖A‖2F + ‖B‖2F
. Without loss of generality,

one can see that the criterion in (20) and (21) are “almost

equivalent” to each other in the sense that if one takes on a

small value, so does the other; particularly, the quadratic terms

in (20) become zero if (21) is zero, and vice versa.

To address the minimization problem in (21), we define:

fp = [e−jωp · · · e−j2Nωp ]T ,

F = [f1 · · · f2N ],

X̄ = [X 0]TM×2N ,

V = [v1 · · · v2N ]T .

Consequently, one can readily rewrite the minimization prob-

lem in (21) as

min
{xm(n)}N−1,M

n=0,m=1,

{vp}2Np=1

∥∥FHX̄ − V
∥∥2

F

s.t. |xm(n)| = 1, ‖vp‖2F = κ.

(22)

The criterion in (22) can be efficiently handled via a cyclic

minimization approach. For a given {xm(n)}N−1,M
n=0,m=1, the

solution {vp}2Np=1 can be given as

vp =
√
κ

dp
‖dp‖2 (23)

where dTp = the pth row of (FHX̄). Furthermore, note that∥∥FHX̄ − V
∥∥2

F
=

∥∥X̄ − FV
∥∥2

F
as F is unitary. Hence, for

a given {vp}2Np=1, the solution {xm(n)}N−1,M
n=0,m=1 to (21) can

be found as

xm(n) = exp(j arg([FV ]m,n)). (24)

It must be noted that the terms FHX̄ in (23) and FV in

(24) are nothing but the FFT of each column of X̄ and the

IFFT of each column of V , respectively. Owing to the nature

of these solutions, G-WeCAN is very fast and can essentially

be used for generating sequence sets with N ∼ 105 and M ∼
102.

IV. GENERALIZED CAN FROM G-WECAN

Based on above formulations we further introduce a gener-

alized version of the CAN algorithm [11], referred to as (G-

CAN). G-CAN is even more computationally efficient than

G-WeCAN when, lowering all the out-of-phase correlation

and complementary correlation lags has the same importance.

Assuming {αn}N−1
n=0 = {βn}N−1

n=0 = 1, the criterion in (6) can

be simplified as

Ẽ =
N−1∑

n=−(N−1)

‖Rn −NIMδn‖2F +

N−1∑
n=−(N−1)

‖Γn‖2F (25)

=
1

2N

2N∑
p=1

‖Φ̃r(ωp)−NIM‖2F + ‖Φ̃γ(ωp)‖2F

where Φ̃r(ωp) =
∑
nRne

−jnωp ; Φ̃γ(ωp) =
∑
n Γne

−jnωp .

Furthermore, following the simplification in (17), one can
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(a) (b)

Fig. 1. (a) Cross-correlation and (b) complementary cross-correlation levels
of the G-WeCAN sequences for N = 1000,M = 3.

write Φ̃r(ω) = χ(ω)χH(ω) and Φ̃γ(ω) = χ(ω)χT (ω).
Consequently, (25) can be given as

Ẽ =
1

2N

2N∑
p=1

‖χpχHp −NIM‖2F + ‖χpχTp ‖2F (26)

which can be further simplified as

Ẽ =
1

2N

2N∑
p=1

(2‖χp‖42 − 2N‖χp‖22 +N2M) (27)

= N
2N∑
p=1

(∥∥∥∥ χp√
N

∥∥∥∥
2

2

− 1

2

)2

+N2

(
M − 1

4

)
.

Finally, using the same argument following (21), the mini-

mization problem can be defined as

min
χp,ṽp

2N∑
p=1

∥∥∥∥ χp√
N
− ṽp

∥∥∥∥
2

2

(28)

s.t. |xm(n)| = 1, ‖ṽp‖22 =
1

2
.

To solve the minimization criterion in (28), we define F̃ =
1√
N

[f1 · · · f2N ]. Hence, the minimization problem for G-

CAN can simply be given in a matrix form as

min
X̄,Ṽ

∥∥∥F̃HX̄ − Ṽ
∥∥∥2

F
(29)

s.t. |xm(n)| = 1, ‖ṽp‖22 =
1

2
.

To find the solutions to (29), one can resort to similar cyclic

minimization techniques as detailed in Section III.

V. NUMERICAL EXAMPLES

In this section we consider minimizing the criterion in (22)

for N = 1000 and M = 3. We initialize the algorithm

with a randomly generated set of sequences with the said

length. However, other sequence families with known good

correlation properties such as Golay sequences can also be

used for initialization. To construct the matrices A and B in

(11) that are needed in G-WeCAN, we choose α2
n = β2

n = 1
for n ∈ [1, 250] and zero otherwise. α0 and β0 are chosen to

make sure that A � 0 and B � 0. For G-CAN we choose

α2
n = β2

n = 1 for all n. Fig. 1(a) shows the cross-correlation

Fig. 2. Comparison of ISL metric for CAN, WeCAN and G-WeCAN sequence
with N = {10, 30, 100, 300, 1000} and M = 3.

Fig. 3. Comparison of computation times for CAN, WeCAN and G-WeCAN
sequence with N = {10, 30, 100, 300, 1000} and M = 3.

levels of the constructed G-WeCAN set of sequences for

different lags.

We also compare the generalized algorithm with previously

suggested CAN and WeCAN algorithms in terms of overall

ISL metric for different sequence length. We generate sets of

sequences with sequence length N = {10, 30, 100, 300, 1000}
and M = 3 for CAN, WeCAN and G-WeCAN. Fig. 2

depicts that G-WeCAN shows better performance than its

CAN and WeCAN counterparts. It can be noted that, whereas

WeCAN requires 2N computations of SVD of an N × M
matrix, G-WeCAN relies on computations of FFT coefficients.

Due to this fact, G-WeCAN is much faster than WeCAN

and can be essentially used for generating sequences with

length in the order of 105. Fig. 3 shows the comparison of

required computation times for CAN, WeCAN and G-WeCAN

sequences with N = {10, 30, 100, 300, 1000} and M = 3 on

a standard PC.

VI. CONCLUSION

We presented novel cyclic algorithms, referred to as G-

WeCAN and G-CAN, to minimize a generalized WISL cri-

terion to design sets of unimodular sequences that have

good correlation and complementary correlation properties. A

number of numerical examples were provided to demonstrate

the good correlation and complementary correlation properties

of the sets of unimodular sequences obtained by the proposed

algorithms.
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