
2998 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 11, JUNE 1, 2018

Constructing Binary Sequences With Good
Correlation Properties: An Efficient
Analytical-Computational Interplay

Arindam Bose , Student Member, IEEE, and Mojtaba Soltanalian, Member, IEEE

Abstract—Binary sequence sets with asymptotically optimal
auto/cross correlation peak sidelobe level (PSL) growth have been
known in the literature for a long time, and their construction has
been studied both analytically and numerically. In contrast, it has
been a long-standing problem whether we can construct a family
of binary sequences whose auto-correlation PSL grows in an op-
timal manner. In this paper, we devise a construction method of
binary sequences with asymptotically optimal PSL growth from
the sequence sets with good correlation properties. A key compo-
nent of the design follows from the observation that if the PSL
of the sequence set grows optimally or nearly optimally, then the
PSL of the constructed binary sequence will experience a similar
growth as a consequence. The proposed construction is simple-to-
implement, and is shown to be accomplished in polynomial time.
With such a construction, we not only bridge the gap between an-
alytical construction and computational search, but also pave the
way to settle the long-standing design problem of binary sequences
with an optimal growth of the auto-correlation PSL.

Index Terms—Auto-correlation, binary sequences, information
embedding, peak sidelobe level, sequence design.

I. INTRODUCTION

B INARY sequences with small auto/cross-correlation
also referred to as good correlation properties form an

essential component of a large set of information processing
systems, ranging from information collection in active sensing,
to information embedding and transmission in communication
systems. For instance, they are widely used in Code-Division
Multiple-Access (CDMA) schemes to distinguish between
different users while at the same time enabling the system
to synchronize [1], whereas in active sensing applications,
usage of such sequences for pulse modulation paves the way to
conveniently retrieve the received signal from the range bin of
interest by employing a matched filter, and thus suppress inputs
from other range bins [2].

Although several families of sequence sets with small
auto/cross-correlation have been proposed in the past decades,
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sequences with low auto-correlation have seen little progress in
the analytical arena (see Section II for details). In fact, the task
of finding sequences with low auto-correlation is infamously
known as a difficult computational problem. The complexity of
the optimization problems associated with low auto-correlation
binary sequences is discussed in [3]–[5]. On the other hand, the
rapid increase in computational resources has motivated the re-
searchers to perform exhaustive search of such sequences with
larger length compared with what could have been considered
before. The literature on this topic is quite extensive (e.g., see [2],
[3], [6]–[32]). Nonetheless, we note that an exhaustive search
over a set of binary sequences with a cardinality larger than
1020 (i.e., approximate sequence lengths of N ∼ 100 or larger)
is still deemed to be impractical1 using the current standard com-
putational tools. On the contrary, to analytically construct such
binary sequences, it requires only a little computational cost. In
this paper, we bridge the gap between exhaustive search, also re-
ferred to as computational design, and analytical constructions
of binary sequences by resorting to a polynomial-time approach
that exploits the strengths of both worlds. The proposed method
constructs the binary sequences from sequence sets with good
correlation properties through a non-convex quadratic program
that can be handled in polynomial-time. In particular, we show
that if the peak sidelobe level (PSL) of the sequence sets grows
optimally in the periodic case and nearly optimally in the ape-
riodic case, the PSL of the constructed binary sequences also
grows in a similar manner.

As a cornerstone of our performance analysis, we present
several examples of binary sequence design and the obtained
PSL values. Besides the usual design examples, we also present
some interesting results on the application of the constructed
sequences in information embedding applications, where a high
degree of both imperceptibility and robustness must be guaran-
teed (see e.g., [33]–[37], and the references therein). We will use
the optimally constructed binary sequences in lieu of sequence
families commonly used in practice such as m-sequences, Gold
or Kasami sequences in the pre-existing watermarking frame-
works to ensure robustness and imperceptibility of the autho-
rized watermark information and enhance the efficiency of in-
formation embedding algorithm. While being one from many,
the presented example hints at the significant potential of our
approach in practical applications.

The rest of this paper is organized as follows. The formu-
lation as well as a useful background review of the problem

1Assuming that a standard PC can handle 5 × 109 simple math operations
per second, an exhaustive search over a space of 1020 sequences is guaranteed
to take more than 634 years.
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TABLE I
NOTATIONS

is provided in Section II. Our design approach is presented in
Section III. Section IV is dedicated to the numerical results, in-
cluding discussions on the information embedding application.
Finally, Section V concludes the paper.

Notation: We use bold lowercase letters for vectors and bold
uppercase letters for matrices. Please see Table I for other nota-
tions used throughout this paper.

II. PRELIMINARIES

A. Problem Formulation

Let X be a set of M sequences of length N denoted as
{xm}M

m=1 , each having identical energy of ‖xm‖2
2 = N . Let

xm 1 and xm 2 be two generic sequences from the set X .
The periodic {cm 1 ,m 2 (k)} and aperiodic {rm 1 ,m 2 (k)} cross-
correlations of the sequences xm 1 and xm 2 at shift k are
given as,

cm 1 ,m 2 (k) �
N∑

n=1

xm 1 (n)x∗
m 2

(n + k)(mod N ) , (1)

rm 1 ,m 2 (k) �
N −k∑

n=1

xm 1 (n)x∗
m 2

(n + k) = r∗m 1,m 2
(−k), (2)

for 0 ≤ k ≤ (N − 1). The periodic and aperiodic auto-
correlation of any xm ∈ X can be obtained from (1) and (2)
by using xm 1 = xm 2 . The inner product of xm 1 and xm 2 is
given as xH

m 1
xm 2 = cm 1 ,m 2 (0) = rm 1 ,m 2 (0).

In the sequel, we focus on the aperiodic case as well as the pe-
riodic case. The periodic correlations are generally considered
to be easier to study than their aperiodic counterparts. Often
the study of sequences with good aperiodic correlations con-
cerns with obtaining sequences with good periodic correlation
properties and then examine their aperiodic correlations. There
has been a long-standing interest in the study of design meth-
ods capable of finding binary sequence sets whose periodic and

aperiodic correlations are, in some measurable sense, collec-
tively small. Note that the in-phase lag (i.e., k = 0) of both
correlations represents the energy component of the sequence.
The problem of sequence design for good correlation properties
usually arises when small out-of-phase (i.e., with k �= 0) cor-
relation lags are required. To formalize this outcome, several
measures of “smallness” have been typically employed, includ-
ing the peak sidelobe level (PSL), for the aperiodic case

PSLAP(X) � (3)

max({|rm 1 ,m 2 (k)|}m 1 �=m 2 ;k ∪ {|rm,m (k)|}m ;k �=0),

as well as for the periodic case,

PSLP(X) � (4)

max({|cm 1 ,m 2 (k)|}m 1 �=m 2 ;k ∪ {|cm,m (k)|}m ;k �=0),

which are the most relevant to our analysis. Likewise, the peri-
odic and aperiodic PSL of a binary sequencex can be formulated
from its auto-correlations as follows,

PSLAP(x) � max(|rm,m (k)|m ;k �=0), (5)

PSLP(x) � max(|cm,m (k)|m ;k �=0).

B. Earlier Results

1) Periodic Auto-Correlations of Binary Sequences: In an
ideal setup, a binary sequence with all its out-of-phase periodic
auto-correlations equal to zero, is called a perfect sequence [38].
A necessary condition required for a perfect sequence to exist
is given in the following lemma.

Lemma 1 ([38]): All periodic auto-correlations of a binary
sequence x of length N are compatible with N mod 4.

PSLP(x) ≥
{0 for N ≡ 0 mod 4

1 for N ≡ 1 or 3 mod 4
2 for N ≡ 2 mod 4

(6)

It can be concluded from Lemma 1 that the perfect binary
sequence can only exist when the length N is divisible by 4.
However, the corollary given in [39] states that there is no per-
fect binary sequence of length N for 4 < N < 548 964 900.
Moreover, a binary sequence is called optimal in the sense that
the equality holds in (6). Sequence families such as Legendre,
Sidelnikov and Galois sequences are good examples of opti-
mal sequences with respect to their periodic auto-correlations
[38]. Moreover, considering sequence sets instead of a single
sequence, it is indeed possible to generate binary sequence
sets with periodic PSL asymptotically bounded as O(

√
N).

For example, [40] states that Kasami family includes sets
of binary sequences of length n = 2N − 1 and cardinality
m = 2N/2 where N is an even natural number. The periodic
PSL value of a Kasami set is given by 1 + 2N/2 . In addition,
for odd N , Gold binary sequence sets can be constructed for
(m,n) = (2N + 1, 2N − 1) that have a periodic PSL value of
1 +

√
2N +1 − 2. The Weil family consists of sequence sets with

n = N and m = (N − 1)/2, where N is prime, that possess a
periodic PSL value of 5 + 2

√
N .

2) Aperiodic Auto-Correlations of Binary Sequences: On a
slightly relaxed note, the Barker sequences have the ideal prop-
erty of all out-of-phase aperiodic autocorrelations are either 0
or 1 in magnitude. According to [38], there is no Barker se-
quence of odd length greater than 13, furthermore if a Barker
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sequence of even length N exists, then every odd prime divisor
of N is consistent with 3 mod 4. In response to the supposedly
nonexistence of long Barker sequence, several researchers have
studied the asymptotic behavior of collective smallness of the
aperiodic auto-correlations of the sequences. Let XN denote the
set of all binary sequences of length N . The ultimate goal is
to optimally compute and understand the asymptotic behavior,
i.e., as N → ∞, of

Pmin � min
x∈XN

PSLAP(x). (7)

Note that to calculate Pmin numerically for a given sequence
length N , even in the most ingenious way, it requires testing an
exponential number of combinations. The exponential term of
the complexity can be reduced fromO(2N ) to roughlyO(1.4N )
by using more sophisticated and efficient algorithms [41]–[43].
The value of Pmin has been computed up to N = 105 in the
literature [43]–[45] using exhaustive search.

1) Pmin ≤ 1 for N ≤ 5 [38];
2) Pmin ≤ 2 for N ≤ 21 [44], where Pmin = 1 is essentially

achieved for N = 2, 3, 4, 5, 7, 11, 13 by Barker sequences
[46];

3) Pmin ≤ 3 for N ≤ 48 (see [45] for N ≤ 40, and [41] for
N ≤ 48);

4) Pmin ≤ 4 for N ≤ 82 (see [47] for 49 ≤ N ≤ 61, and
[42], [43] for 61 ≤ N ≤ 70);

5) Pmin ≤ 5 for N ≤ 105 [38].
Ein-Dor et al. [48] used a heuristic argument to obtain an “ed-

ucated guess” about the growth of Pmin and conjectured that, as

N → ∞, we have
Pmin√

N
→ d, where d = 0.435... Historically,

Moon and Moser [27] first studied the asymptotic behavior, as
N → ∞, of Pmin for the binary sequences as early as 1968.

Theorem 1: ([27]) If K(N) is any function of N such that
K(N) = O(

√
N), then the proportion of sequences x ∈ XN

which have PSLAP(x) > K(N) approaches 1, as N approaches
∞.

Theorem 2: ([27]) For any fixed ε > 0, the proportion of
sequences x ∈ XN which have PSLAP(x) ≤ (2 + ε)

√
N ln N

approaches 1, as N approaches ∞.
It can be concluded from Theorem 1 and 2 that, as

N → ∞, for almost all sequences K(N) < PSLAP(x) ≤ (2 +
ε)
√

N ln N for any ε > 0. Mercer [49] further improved the
upper bound by showing that for any fixed ε > 0, Pmin ≤
(
√

2 + ε)
√

N ln N when N is sufficiently large. Dmitriev and
Jedwab [50] postulated that the typical PSL growth behaves as
Θ(

√
N ln N) and provided experimental evidence for the same.

We note that there are sequence families (i.e., families of sin-
gle sequences) for which the aperiodic PSL grows faster than
Θ(

√
N ln N). An example is the sequence family F = {ψN :

N ∈ N} such that each of the N elements of ψN is 1. How-
ever, the literature does not currently suggest whether there
exists any sequence family whose aperiodic PSL grows like the
lower bound O(

√
N), nor even like Θ(

√
N). It has been shown

in [9] that the mean value of the PSL of m-sequences of length
N = 2m − 1 seems to grow like Ω(

√
N) and likeO(

√
N ln N).

But, the claim that the PSL of m-sequences grows like O(
√

N),
which appears frequently in the radar literature, “is concluded
to be unproven and not currently supported by data” [9]. How-
ever, aperiodic correlations of families of unimodular sequences,
namely Frank and Chu sequences show optimal nature in

asymptotic sense. In particular, [38] shows that there exists an
infinite family of unimodular sequences of length N whose
aperiodic peak sidelobe level grows like a constant times

√
N .

Sequence sets with aperiodic PSL values behaving like
O(

√
N) as N → ∞ are usually referred to as asymptotically

optimal owing to the fact that their aperiodic PSL growth has
a similar behavior to that of the well-known Welch PSL bound
[51]. We refer the interested reader to [9] for further details on
this aspect. Note that finding sequence sets with such a behavior
is an achievable goal [1], [40] at least computationally. In partic-
ular, such sequence can be conveniently designed via numerical
tools such as fast CAN algorithms (see, e.g., [2], [8], [52]).

By tapping into the potential of sequence sets in achieving an
asymptotically optimal aperiodic PSL growth, in the following,
we propose a construction algorithm of binary sequences whose
aperiodic PSL grows like O(

√
N).

III. THE PROPOSED CONSTRUCTION

In this section, we show that sets of sequences with good
correlation properties can be used as bases for binary se-
quences with good auto-correlation. Observe that, for any sub-
set of the sequence sets the PSL growth optimality result
holds, as considering a subset only can decrease the PSL. Let
X = {x1 ,x2 , . . . ,xM } be such a subset of sequences of length
N with ‖xm‖2

2 = N,∀m, having good correlation properties;
namely, X is constructed to achieve

ISLAP(X) �
M∑

m=1

∑

0< |k |<(N −1)

|rm,m (k)|2 (8)

+
M∑

m 1 =1

∑

m 2 �=m 1

N −1∑

k=−(N −1)

|rm 1 ,m 2 (k)|2

that is as small as possible. We assume that 2 ≤ M � N , and
particularly that M behaves as O(1) with respect to sequence
length N . The lower bound of the aperiodic ISL metric in (8) is
given by [52]

BISLAP (X) � N 2M(M − 1). (9)

Also note that, using the above lower bound one can achieve the
well-known Welch lower bound on PSLAP(X):

BPSLAP (X) � N

√
M − 1

2NM − M − 1
. (10)

Interestingly, it was shown in [52] that the above lower bounds
for the aperiodic ISL and PSL metrics can be approached con-
veniently via computational design algorithms such as the fast
CAN algorithm in [2]. With this in mind, we further observe
that

PSLAP(X) ∼
√

M − 1
2M

√
N (11)

as N → ∞, which implies

PSLAP(X) � 1√
2

√
N. (12)
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A. Approaching the Optimal PSL Growth

Let b be a binary sequence (with ±1 entries) obtained by a
linear combination of the sequences {xm}, viz.

b = w1x1 + w2x2 + · · · + wM xM = Xw (13)

where

X = [x1 x2 · · · xM ], and

w = [w1 w2 · · · wM ]T ∈ CM .

Note that although X and w can be complex vectors, their
productXw is not necessarily complex-valued.

Theorem 3: LetX be a set of M sequences each of length N ,
whose aperiodic PSL is asymptotically upper bounded as in (12).
In such a case, the aperiodic PSL of the binary sequence b =

Xw of (13) will be asymptotically upper bounded by
μ2
√

2

√
N

where μ = ‖w‖1 =
∑M

m=1 |wm |.
The significance of Theorem 3 stems from the fact that the

asymptotic growth of the aperiodic PSL of the generated binary
sequence behaves similarly as that of the original sequence set.
The proof of the Theorem 3 goes as follows. The aperiodic
auto-correlation lags of b are given by

rb(k) =
N −k∑

l=1

b(l)b∗(l + k) (14)

=
N −k∑

l=1

(
M∑

m 1 =1

wm 1xm 1 (l)

)(
M∑

m 2 =1

w∗
m 2
x∗

m 2
(l + k)

)

=
M∑

m 1 =1

M∑

m 2 =1

(
wm 1 w

∗
m 2

N −k∑

l=1

xm 1 (l)x
∗
m 2

(l + k)

)

= wHRkw

where [Rk ]m 1 ,m 2 = rm 1 ,m 2 (k). It follows from (14) that

|rb(k)| ≤
M∑

m 1 =1

M∑

m 2 =1

|wm 1 ||wm 2 ||rm 1 ,m 2 (k)| (15)

≤ max
m 1 ,m 2

{|rm 1 ,m 2 (k)|}
(

M∑

m 1 =1

M∑

m 2 =1

|wm 1 ||wm 2 |
)

≤ PSLAP(X) ‖w‖2
1 .

As a result, using (12) we have that

PSLAP(b) � μ2
√

2

√
N. (16)

In order to determine the growth rate of μ, observe that

[
XHX

]
m,n

=
{

N m = n,
αm,n m �= n,

m, n ∈ {1, 2, . . . ,M}, (17)

where according to (10),

|αm,n | ≤ N

√
M − 1

2NM − M − 1
.

LetX = UΣV H represent the Singular Value Decomposition
(SVD) of X , where U and V are complex unitary matrices
of size N × N and M × M , respectively, and Σ is an N × M
diagonal matrix. Note thatXHX = V Σ2V H , where

Σ2 =

⎡

⎢⎣
|σ1 |2 O

. . .
O |σM |2

⎤

⎥⎦ (18)

with {σm}M
m=1 being the singular values ofX .

Now observe that,

V Σ2V H = XHX

� NIM +Q, (19)

where,

‖Q‖F ≤ N

√

(M 2 − M)
(

M − 1
2NM − M − 1

)
. (20)

As a result,

|σm |2 = eT
mΣ2em = N + eT

mV
HQV em . (21)

The bound in (20) implies that

|eT
mV

HQV em | ≤ N

√

(M 2 − M)
(

M − 1
2NM − M − 1

)
.

Consequently, one can easily verify that

|σm |2 ≥ N − N

√

(M 2 − M)
(

M − 1
2NM − M − 1

)
. (22)

Further note that,

‖X†‖2
F =

M∑

m=1

1
|σm |2

≤ M

N − N

√

(M 2 − M)
(

M − 1
2NM − M − 1

) .

(23)

Moreover as X†X = IM , we conclude that w = X†b, and
therefore,

‖w‖2
2 ≤ ‖X†‖2

F ‖b‖2
2

≤ M

1 −
√

(M 2 − M)
(

M − 1
2NM − M − 1

) . (24)

Note that, due to the Cauchy-Schwarz inequality,

(
M∑

m=1

|wm |
)2

≤
(

M∑

m=1

|wm |2
)(

M∑

m=1

1

)
. (25)
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It follows from the above that

μ = ‖w‖1

≤ M

√√√√√
1

1 −
√

M(M − 1)2

2NM − M − 1

� f(M,N), (26)

where

lim
N →∞

f(M,N) = M, (27)

showing that μ behaves as O(1) with respect to the sequence
length N , as N grows large. Finally, from (16) and (27) one can
observe that PSLAP(b) behaves like O(

√
N). This conclusion

is summarized in Theorem 4. Note that, a similar asymptotic
behavior of the periodic PSL of a binary sequence can also be
drawn from the above formulations, with minor modifications.
A detailed discussion on this observation, however, is omitted
here in for the sake of brevity.

Theorem 4: Let X be a set of M sequences each of length
N , whose aperiodic PSL grows like O(

√
N). A binary se-

quence created as b = Xw with w ∈ CM will similarly have
an asymptotic aperiodic PSL growth bounded as O(

√
N).

Remark 1: It is interesting to observe that |σm |2 = N occurs
if and only if all the sequences included in X are orthogonal,
which will follow in a zero cross-correlation case. However,
in a usual case where the sequences only have a low cross-
correlation, the orthogonality condition is nearly met, which
would lead to a μ that is upper bounded at a value larger
than M . �

B. The Optimal Construction

In the sequel, we investigate an optimal approach to con-
structing b through considering X as a basis—namely, we can
construct the binary vectors b using the optimization problem

min
w,b

‖Xw − b‖2
2 (28)

A possible approach to deal with constructing such binary se-
quences is to apply a cyclic minimization of (28); namely, for
fixed b the minimizer w of (28) is given by

w = X†b. (29)

Moreover, for fixedw the minimizer b of (28) can be obtained as

b = sgn (�Xw). (30)

Fig. 1 illustrates the simplified geometry of such a construc-
tion from a linear combination of sequences, and the binary
sequences in their neighborhood for the three-dimensional case.

Remark 2: The careful reader may argue that the above ap-
proach, while optimal, does not guarantee finding a binary vector
in the subspace spanned by the sequence sets—particularly as
M � N . This is a valid observation, and pertains to situations

where
∥∥∥b̃−Xw

∥∥∥
2

is non-zero at the optimum b̃. Hence, we

will have a non-zero fitting error vector ε � b̃−Xw, whose
�2-norm is being minimized in our construction. Consequently,

Fig. 1. An illustration of the simplified geometry of construction from the lin-
ear combination of sequence sets, and the binary sequence with good correlation
in three-dimensional case.

the auto-correlation sequence in this case can be rewritten as

rb̃(k) =
N −k∑

l=1

b̃(l)b̃
∗
(l + k)

=
N −k∑

l=1

(
M∑

m 1 =1

wm 1xm 1 (l) + ε(l)

)

(
M∑

m 2 =1

w∗
m 2
x∗

m 2
(l + k) + ε∗(l + k)

)

=
M∑

m 1 =1

M∑

m 2 =1

(
wm 1 w

∗
m 2

N −k∑

l=1

xm 1 (l)x
∗
m 2

(l + k)

)

+
N −k∑

l=1

ε(l)ε∗(l + k)

+

[
M∑

m 1 =1

(
wm 1

N −k∑

l=1

xm 1 (l)ε
∗(l + k)

)

+
M∑

m 2 =1

(
w∗

m 2

N −k∑

l=1

x∗
m 2

(l + k)ε(l)

)]

= rb(k) + rε(k) + 2�rbε(k), (31)

where {rb(k)} is the desired auto-correlation of the binary se-
quence, and the extra terms {rε(k)} and {rbε(k)} represent the
auto-correlation lags of ε and the cross-correlation lags between
the desired binary sequence b and ε, respectively. Interestingly,
one can expect that both extra terms {rε(k)} and {rbε(k)} to
be small, even if ε is non-zero. This is due to the fact that the
optimality of b̃ leads to an ε that has noise-like properties, in-
cluding a low auto-correlation, as well a low cross-correlation
with the binary vector of interest [53]. Therefore, the proposed
algorithm works well even if ‖b−Xw‖ �= 0, as is also evident
by the numerical results presented in section IV. �

Interestingly, the global optimization of (28) for finding the
optimal binary sequences with good auto-correlation can be
accomplished in polynomial-time. To see how this goal can be
achieved in practice, note that by substituting the minimizer
w in (28), the design problem boils down to the following
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minimization problem:

min
b

∥∥XX†b− b∥∥2
2 (32)

Now considering thatXX† is Hermitian, the objective function
of the above minimization problem can be rewritten as

∥∥XX†b− b∥∥2
2 (33)

=
(
XX†b− b)H (XX†b− b)

= bHXX†XX†b− 2bHXX†b+ bH b

= −bHXX†b+ N.

Therefore, (32) is equivalent to the computation of the bi-
nary vector that maximizes the quadratic form bHXX†b; more
precisely,

bopt � arg max
b
bHXX†b (34)

in which rank(XX†) = M , that specifically behaves as O(1)
with respect to the problem dimension N . The maximization of
a positive (semi-)definite complex quadratic form over a binary
vector set is an NP-hard problem in general and can be tack-
led by exhaustive search when the quadratic form is full-rank.
However, as the quadratic form in the above is rank-deficient,
the optimum can be found with polynomial complexity in the
sequence length N [56], [57]. In particular, [56] proposes an
O(N 2M ) cost algorithm that constructs a set of candidates with
cardinality O(N 2M −1) including the global optimum of (34)
and reduces the size of the feasible set from exponential to
polynomial. This is due to the fact that the number of local
optima for rank-deficient quadratic forms such as (34) enjoys a
polynomial growth, whereas that of a full-rank quadratic form
grows exponentially with the sequence length N . Note that the
approach presented above can easily be extended to the design
of Q-phase (also known as Q-ary) sequences. To this end, one
only needs to perform the maximization of the quadratic form
in (34) over the set of Q-phase vectors in lieu of binary vectors;
which can be completed with polynomial complexity similar to
the binary case (see [57] for details).

Finally, the algorithm for construction of the desired binary
sequences from the sequence sets with good correlation is sum-
marized in Table II.

Remark 3: We note that norms other than �2 can also be
easily used if one resorts to a cyclic/local optimization of the
non-convex problem in (28). But the above discussion reaffirms
the key motivation behind using the �2-norm for our optimiza-
tion approach: by using �2-norm, one can formulate the orig-
inal design problem as a rank-deficient quadratic optimization
problem. This particular formulation, used along with the com-
putational approach of [56], guarantees not only to (i) find the
global optimum sequence of (28), but also to (ii) achieve this
goal with a polynomial-time computation cost. These guarantee
are central to the promise of the paper, namely finding binary
sequences with desirable correlation properties in polynomial-
time. Such critical guarantees are not available when using other
metrics such as �1 or �∞ norms. �

IV. NUMERICAL RESULTS

In this section, several numerical examples will be presented
to examine the performance of our construction in approaching

TABLE II
ALGORITHM FOR CONSTRUCTION OF BINARY SEQUENCE FAMILIES WITH

OPTIMAL PSL GROWTH

TABLE III
NOTATION AND NUMBER OF SEQUENCES

an optimal growth of the PSL metrics. We also show that our
optimally constructed sequences are effective in information
embedding applications in the sense that they outperform the
traditionally employed sequences.

A. Construction of the Sequences

We construct new families of binary sequences by leverag-
ing sequences drawn from well-known sequence sets including
Gold [58], Kasami [59], Weil [60] and Legendre sets [61], [62].
We compare the growth of the obtained periodic PSL values
(denoted by Popt) of the optimally constructed sequences bopt

with the function
√

N , where N denotes the sequence length.
Our main interest is to test (through numerical investigations)
our claim that the PSL of constructed sequences grows like
O(

√
N). Moreover, we show that although CAN algorithms
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Fig. 2. The PSL growth of constructed binary sequences vs. length N obtained from different sequence families: (a) Gold sequence, (b) Kasami sequence,
(c) Weil sequence and (d) Legendre sequence.

are not very effective in finding binary sequence with low PSL,
they can be effectively used to lower the PSL of the obtained
sequences. This is achieved by using the obtained sequences as
initialization for the CAN algorithms. The notations used for
the sequence families in the forthcoming discussions and length
of sequences that are used are given in Table III.

For comparisons, we make use of the PN sequence as it is
very easy to generate for virtually any length of power 2 and
is frequently used in literature. We calculate the variations of
Popt with the sequence length N and compare the outcome
with

√
N for the constructed sequences from different sequence

sets. Fig. 2 provides evidence of an almost constant nature of
Popt/

√
N as N grows large (from which we conclude that

the original function must grow as O(
√

N)). Fig. 2 also com-
pares the value Popt/

√
N of obtained sequences with that of

the sequences from CAN algorithm (CAN-aided) by using the
obtained sequence as initialization, and also with that of PN
sequences. It can be observed that the CAN algorithm can ef-
fectively reduced the PSL of the obtained sequences from our
construction. As a result, by our analysis, the CAN-aided se-
quences should also have an optimal PSL growth. The plots
also appear to support the claim that the PSL of PN sequences
grows as O(

√
N ln N).

Fig. 3. Block diagram of watermark embedding and extraction algorithm
using generated binary sequence.

B. Information Embedding Application

Finally, it is of interest to see the performance of our construc-
tion in a practical example. We use our constructed sequences as
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Fig. 4. The variation of (a) PSNR (dB) and (b) NC with Gain factor (k) for different sequence sets: PN sequence (PPN ) and binary sequence constructed from
Gold sequence (SGold ), Kasami sequence (SKasam i ) and Legendre sequence (SLegendre ).

orthogonal feeding sequence in a certain digital watermarking
algorithm to examine its effectiveness towards imperceptibility
and robustness of the watermarked information. The scheme
followed in this paper invisibly embeds a binary watermark
image into a gray-scale cover image which makes the informa-
tion about the authentication more secure. The watermarking
technique described in [33], [34] employs a Pseudo Noise (PN)
sequence as its primary feeding sequence. In this paper, instead
of using PN sequences we use our constructed binary sequences
for the embedding purpose. The rest of the algorithm closely
follows the technique described in [33]. The detailed block di-
agram of the algorithm is described in Fig. 3.

To verify the effectiveness of the proposed watermarking
method, a series of experiments are conducted on several ran-
dom test images. We use a set of gray cover images of standard
size for this purpose. For each test image, the results of proposed
watermark scheme are compared with the widely used PN se-
quences. Perceptual quality of watermarked image is measured
by calculating the Peak Signal to Noise Ratio (PSNR) between
original cover image and watermarked image. At the receiver,
the watermark is extracted from the watermarked image by us-
ing the orthogonal codes and evaluation of extracted watermark
is done by measuring Normalized Cross-correlation (NC) with
the original watermark—see [33] for details.

Fig. 4 compares the variation of PSNR (dB) in watermarked
image and NC of original and extracted watermarks with vary-
ing watermarking strength or gain factor (k) for the binary se-
quences constructed from Gold, Kasami and Legendre sequence
families with that of PN sequences. The overall PSNR decreases
and the NC increases with increasing k. However, in all cases,
our constructed sequences outperform the PN sequence. It can
also be observed from Fig. 4 that the binary sequence obtained
from Kasami sequence set works best in both cases. Also to
comment on the robustness of embedding scheme, a number of
spatial and geometrical attacks are applied to the watermarked
image. The quality of the watermark extracted from the attacked
image is checked using NC between original watermark and ex-
tracted watermark. Table IV summarizes the results from various
attacks for binary sequences constructed as described before in

TABLE IV
COMPARISON OF RESULTS FROM VARIOUS ATTACKED WATERMARKED IMAGE

AT GAIN FACTOR k = 2

comparison with the PN sequence. Similar to the previous case,
the constructed binary sequences appear to outperform the PN
sequence, with SKasami producing the best result.

V. CONCLUDING REMARKS

A polynomial-time construction approach for designing bi-
nary sequences with optimal PSL growth was proposed. The
suggested approach taps into the potential of sequence sets in
achieving an asymptotically optimal PSL growth both in pe-
riodic and aperiodic sense, and moreover, makes an effective
use of efficient algorithms available for (a specific subset of)
non-convex quadratic optimization problems. Several numeri-
cal examples have been presented to investigate the PSL growth
of the constructed sequences, particularly for rather long se-
quences (with length N ∼ 212). Moreover, it was shown that
the constructed sequences can outperform the widely used PN
sequence in information embedding applications.
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