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Motivation

• We study the ambiguity function shaping in frequency-modulated continuous wave
(FMCW) automotive radar.

• Motivated by mitigating interference in automotive radar, we devise a low-complexity
algorithm based on power-method-like iterations to minimize the ambiguity function in the
range-Doppler bins corresponding to echoes from clutters in the environment.

• Shaping radar ambiguity functions has long been considered difficult from a pure design or
computational perspective due to the fact that the two-dimensional nature of the ambiguity
function implies the number of design constraints would grow much faster than the design
variables and that the design objective (to be optimized) has a quartic nature.

• A cyclic iterative algorithm is introduced that recasts the quartic problem as a unimodular
quadratic problem (UQP) which can be tackled using power-method-like iterations
(PMLI).

Problem Formulation

The transmit signal with an intra-pulse code length N can be represented as
s(t) = N∑

n=1
xnu(t− nTc), 0 ≤ t ≤ Tc (1)

where x = [x1, . . . , xN ] ∈ CN is the slow-time sequence and the chirp is

u(t) = 1√
Tc

exp(j(2πfct + πKt2)) t

Tc
, (2)

where K = B
Tc

is the chirp rate.
The ambiguity function(AF) is defined as

χ(τ, ν) = ∫∞
−∞ s(t)s∗(t− τ ) exp (−j2πν(t− τ )) dt

We discretize the AF, by setting τ = kTc for k = −N + 1, · · · , 0, · · · , N − 1 and ν = p
NTc

for p = −N
2 , · · · , N

2 − 1 for even p or p = −N−1
2 , · · · , N−1

2 for odd p, we obtain

χ[k, p] ≜ χ(kTc,
p

NTc
)

= ejπ p
N sinc

π
p

N


N∑

n=1
xnx∗n−ke

−jπ(n−k)p/N . (3)

Thus the discrete-AF can be defined as,
r[k, p] ≜ N∑

n=1
xnx∗n−ke

−j2π (n−k)p
N . (4)

We primarily be focus on designing the sequence {xn}N
n=1 so as to minimize the sidelobes of

the discrete-AF in a certain region:
P1 : minimizex

∑
k∈K

∑
p∈P
|r[k, p]|2

s.t. x is unimodular. (5)

Theorem 1
The discrete-AF r[k, p] can be reformulated as

r[k, p] = xHDpJkx, (6)
where

Dp = Diag


e−j2π p
N , · · · , e−j2π (N−1)p

N , e−j2πNp
N


 , (7)

and
Jk = JH

−k =

0 IN−k

Ik 0

 (8)

is the shift matrix that performs the shifting of the vector being multiplied by k lags.

With Ak,p = DpJk and

Ar
k,p ≜

1
2
(Ak,p + AH

k,p),

Ai
k,p ≜

1
2
(Ak,p −AH

k,p) (9)

We arrive at the equivalent problem
P2 : minimize

x,{ur
k,p},{ui

k,p}
∑

k,p


∥∥∥∥∥∥∥(Ãr

k,p)1/2x−
√√√√ζNur

k,p

∥∥∥∥∥∥∥
2
2

+
∥∥∥∥∥∥∥(Ãi

k,p)1/2x−
√√√√ζNui

k,p

∥∥∥∥∥∥∥
2
2


s.t. x is unimodular,
∥ur

k,p∥2 = ∥ui
k,p∥2 = 1 for all k ∈ K, p ∈ P , (10)

We follow a cyclic optimization approach to tackle P2 in an alternating manner over ,
{ur

k,p} and {ui
k,p}. We have the closed-form solution for {ur

k,p} and {ui
k,p} .

Corresponding to each k ∈ K, p ∈ P :

ûr(s)
k,p = (Ãr

k,p)1/2x
∥(Ãr

l,p)1/2x∥2
, (11)

ûi(s)
k,p = (Ãi

k,p)1/2x
∥(Ãi

k,p)1/2x∥2
: (12)

P2 w.r.t x is equivalent to
max

x̄
x̄HDxx̄

s.t. |xn| = 1, n = 1, · · · , N,

x̄ =

x
1

 . (13)

Dx, is a positive semidefinite matrix. The above problem is called unimodular quadratic
programming (UQP) and the power-method-like iterations below leads to a
monotonically decreasing objective value:

x(s,t) = exp

jarg




IN×N

01×N



T

Dxx̄(s,t−1)




(14)

Algorithm Radar code design for shaping the ambiguity function

Input: Index sets K and P , x(0,0), ur(0)
k,p , ui(0)

k,p for k ∈ K and p ∈ P .
Output: x

1: for t = 0 : Γ1 − 1 do
2: for s = 0 : Γ2 − 1 do
3: Update Dx

4: x(t,s+1)← exp

jarg




IN×N

01×N



T

Dxx̄(t,s)




5: ûr(t+1)

k,p ← (Ãr
k,p)1/2x(t,s)

∥(Ãr
l,p)1/2x(t,s)∥2

,
6:

7: ûi(t+1)
k,p ← (Ãi

k,p)1/2x(t,s)

∥(Ãi
k,p)1/2x(t,s)∥2

.

8: return x← x(Γ1,Γ2)

Numerical Experiments

The region of interest is defined by the sets K and P as
K = {5, 6, 7} and
P = {−15,−14,−13, 11, 12, 13, 14}. (15)
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Figure. The objective value in (6) versus the iterations of Algorithm 1

(a) (b)

Figure. Ambiguity function, in dB, of (a) the initial random code and (b) the synthesized FMCW code with
N = 16 and in green square the assumed regions of interest.
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