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Beamforming in Massive MIMO

Figure: Co-located MIMO radar.
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Beamforming in Massive MIMO

Figure: Typical beampattern in a radar system.
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Questions

As the number of antennas,N, grows large
1 What beampatterns can be realized if the covariance matrix of

the transmit signals may be chosen at will?
2 How rapidly we can change the beampattern for closely

located angles?
3 How our ability to form a peak in a beampattern is governed

by the number of antennas?
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Formulation

An array of N Tx antennas transmitting xn(l) ∈ C
The base band signal:

N∑
n=1

e−j2πf0τn(θ)xn(l) , aH(θ)x(l), l ∈ {1, 2, · · · , L}

The power of the probing signal (transmit beampattern) at θ:

p(θ) = aH(θ)Ra(θ)

where R = E{x(l)xH(l)} is the signal covariance matrix.
Assume τn(θ) = nθ for ULA and ξ = 2πf0 = 1,

p(θ) =
N∑

k=1

N∑
l=1

Rk,l ej(k−l)θ
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Limits of Beamforming

Note that
A covariance matrix R of size N ×N can always be realized with N
independent streams of signals, transmitted by N antennas.
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Realization and Resolution (I0)

Q: What functions p(θ) can be realized using N an-
tennas, if the covariance matrix R ∈ CN×N may be
chosen at will?

Definition
The Zero-Order Resolution, I0(N) is defined as the number of
points in space for which we can exactly determine the power, i.e.,
we can design the covariance matrix of the signal transmitted by N
antennas in order to achieve the allocated power.
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The Finite-Energy Case

When ‖R‖F is bounded. Note that

p(θ) = aH(θ)Ra(θ) = tr(Ra(θ)aH(θ)) = tr(RĀ(θ))

Let E = Ā(θ2)− Ā(θ1) for θ1 and θ2. Then
1 |p(θ2)− p(θ1)| = |tr(RE)| will be small for a small |θ2 − θ1|
2 Given a smoothness of p(θ), an N2 point realization of the

beampattern is achievable.
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The Unconstrained-Energy Case

The psd constraint can be equivalently expressed as R = XHX for
any X ∈ CN×N . Then ‖Xa(θ)‖2 =

√
p(θ). Suppose the beam

pattern p(θ) is to be realized at N locations {θk}Nk=1 and thus
Xa(θk) =

√
p(θk)uk . Let

A = [a(θ1) a(θ2) · · · a(θN)],
U = [u1 u2 · · · uN ],

D = Diag
([√

p(θ1)
√

p(θ2) · · ·
√

p(θN)
])

.

Note that A is a non-singular Vandermonde matrix. Then

XA = UD
⇒ X = UDA−1

⇒ R = A−HDUHUDA−1
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Rate of Innovation (I1)

Q: How rapidly we can change the beampattern, p(θ)
for closely located angles θ using N antennas?

Note that,

∂p(θ)
∂θ

=
∑
k,l

j(k − l)Rk,l ej(k−l)θ,

which implies ∣∣∣∣∂p(θ)
∂θ

∣∣∣∣ ≤ 2
∑
k>l

(k − l) |Rk,l | , I1(R)
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Rate of Innovation (I1) (contd.)

|I1(R)|2

‖R‖2F
≤ α

6 N2(N2 − 1)

where α = ‖R‖2
F−Rdiag
‖R‖2

F
.

Theorem
Assuming that the transmission power is fixed with respect to the
number of antennas, N, the rate of innovation I1(N) behaves as
O(N2) with respect to N.
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Forming a Peak (I2)

Q: How our ability to form a peak in a beampattern
is governed by the number of antennas?

To form a peak one must be able to make the second derivative of
p(θ) “large”:

∂2p(θ)
∂θ2 =

∑
k,l
−(k − l)2Rk,l ej(k−l)θ

which implies that∣∣∣∣∣∂2p(θ)
∂θ

∣∣∣∣∣ ≤ 2
∑
k>l

(k − l)2 |Rk,l | , I2(R)
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Forming a Peak (I2) (contd.)

It follows from above

|I2(R)|2

‖R‖2F
= O(N6)

Theorem
Assuming that the transmission power is fixed with respect to the
number of antennas, N, forming of a peak in the beampattern,
I2(N) behaves as O(N3).
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Numerical Studies

Mathematically, the beampattern matching is accomplished by
solving the following problem,

min
ζ,R

1
K

K∑
k=1

ωk [aH(θk)Ra(θk)− ζd(θk)]2

s.t. Rn,n = c/N, n = 1, · · · ,N,
R � 0

where

d(θ) =
{

1, θ ∈ [θ̃k − 42 , θ̃k + 4
2 ], k = 1, 2, 3, · · ·

0, otherwise
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Numerical Studies (contd.)
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Figure: Realization of a smooth sinusoidal beampattern with zero-order
resolution K = 181 using N ∈ {3, 6, 9, 12, 15, 18} antennas.
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Numerical Studies (contd.)
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Figure: Realization of a rectangular beampattern with resolution K = 181
using N ∈ {5, 15, 25, 35, 45} antennas.
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Numerical Studies (contd.)
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Figure: Realization of a impulse-like beampattern with resolution
K = 181 using N ∈ {10, 25, 50, 100, 125} antennas.
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Summary

The fundamental limitations of the resolution of beampatterns
produced by MIMO radars in relation to their number of
antennas.
Multiple analytical results to show how the changes in a
beampattern are impacted by an increased number of
antennas in a massive MIMO scenario.
Future research: The characterization and efficient
construction of such beampatterns.
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Thank you
and

Questions?

B: abose4@uic.edu


