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CHAPTER 8

Case Studies

Comment: In the discussions concerning the LNN-1 and LNN-2 deep learning
networks in the Case Studies below, learning never stops after training but is
carried out for all samples, and at all iterations from the first sample on. However,
an initial number of datasets in these 2 networks is named as the training sets
whereas all later datasets are considered as testing sets and performance statistics
are computed only for later datasets. In this way, the number of data sets for
training and for testing is the same for all neural networks considered in a given
case study. Only when a pre-training algorithm such as the data-balancing pre-
training algorithm of Section 6.5 above is employed, will this pre-training be
considered in the training-mode statistics of comparing neural networks. Still, in
none of the case studies in this text was this kind of pre-training employed.

This aspect of LAMSTAR must be taken into account when it is compared with
other networks, where the meaning of training is different.

8.1. Human Activities Recognition (A Bose)

The goal of this Case Study is to apply CNN, LNN-1 and LNN-2 deep learning
neural networks to the problem of recognizing human activities Classification
problem and to compare the performance of these three networks and their
respective computational times. All 3 networks considered in this study share the
same input data and the same preprocessing. Comparison is also made with results
from 18 other recently published (2012-2015) studies on the same problem and
for the same database (sec the Results tabulations of the present study, below).
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112 Deep Learning Neural Networks: Theory and Case Studies

DATA: The data for this Case Study comes from 2 human activities datasets:
(1) the MSRDailyActivity3D [Microsoft. MRSDaily] from the Microsoft Research
Laboratory, and (2) CAD-60 from Computer Science Department, Cornell
University [Cornell. CAD60, 2009]. The data is of RGBD (RGB and Depth)
images from Kincet sensors. Of 16 daily activities in MRSDaily, six were selected
(Eating, Talking on cellphone, Standing up, Sitting still, Standing still, Walking).
In these 6 activities 7590 different poses served for training and 600 for testing. Of
12 activities in CAD-60, 5 were selected for this study ((Brushing teeth, talking on
phone, drinking water, cooking/chopping, working on computer).

PREPROCESSING: Our data is in terms of 3D images. Hence we must consider
3D Euclidean coordinates of 20 joints (see Fig. 8.1): 1. Hip Center, 2. Spine,
3. Shoulder Center, 4. Head, 5. Shoulder Right, 6. Elbow Right, 7. Wrist Right,
8. Hand Right, 9. Shoulder Left, 10. Elbow Left, 11. Wrist Left, 12. Hand Left,
13. Hip Right, 14. Knee Right, 15. Ankle Right, 16. Foot Right, 17. Hip Left,
18. Knee Left, 19. Ankle Left, 20. Foot Left. Therefore, the body orientation must
be preprocessed (computed) to achieve a view-invariant activity recognition. After
normalization of the above, we obtain 60 coordinates from 20 body-joints for each
frame (pose of human activity). By adding zeros, we then geta 1 x 64 input vector
that is arranged as an 8 x 8 input matrix and which serves as input to the neural
networks considered in this Case Study.

HEAD

LEFT
SHOULDER

RIGHT
SHOULDER

LEFT

RIGHT ELROW

ELIOW
WRIST
WRIST

PALM © PALM

RIGHT LEFT
FOOT FOOT

Fig. 8.1. Skeleton body joints given by Kincet.
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Table 8.1a. Precision and recall of present and previous results on MRSDaily database — Human
activity classification.

Method Accuracy (%)
LOP [Wang J, 2012] 42.5
Depth motion maps [Yang X, 2012] 43.13
Joint position [Wang J, 2012] 68
Moving pose [Zanfir, 2013 73.8
Local HOV 4D [Oreifej, 2013] 80
Actionlet ensemble [Wang J, 2012] 85.75
SNV [Yang X, 2014] 86.25
HDMM-+3ConvNets [Wang P, 2015] 81.88
CNN (present study) 93
LNN-1 (present study) 95.33
LNN-2 (present study) 99.67

Table 8.1b. Precision and recall of present and previous results on CD-60 database — Human activity
classification.

Method Precision  Recall
MEMM [Sung, 2011], [Sung, 2012] 67.9 555
SSVM [Koppula, 2013] 80.8 714
Structure-Motion Features [Zhang C, 2012] 86 84
NBNN [Yang X, 2013] 71.9 66.6
Image Fusion [Ni B, 2013] 75.9 69.5
Spatial-based Clustering [Gupta R, 2013] 78.1 75.4
K-means Clusterings+SVM+HMM [Gaglio, 2014] 773 76.7
S-ONI [Parisi, 2015] 91.9 90.2
ST Point Feature [Zhu Y, 2014] 93.2 84.6
Pose Kinetic Energy [Shan J, 2014] 93.8 94.5
CNN (present study) 92.33 93
LNN-1 (present study) 96.67 95.33
LNN-2 (present study) 100 100
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Table 8.1c. Summarized comparison MRSDaily database human activity classification.

Parameter CNN LAMSTAR-I LAMSTAR-II

Training time 507.30" 378.637 429.425°%
(sec)

Training 94.33% 98.67+ 100%
accuracy (%)

Testing time 172.36% 151.23% 153.3658
(sec)

"Training time of 7590 training samples for 50 epochs
"Training time of 7590 training samples for threshold 0.9999
‘Testing with the same input used as training set

Mesting time of 600 test samples on trained network

For a trained CNN for 50 epochs

“For a trained LAMSTAR/LAMSTAR II with threshold 0.9999

COMPUTATION: The CNN network receives an 8 x 8 input vector of the
coordinate image above. The CNN program used in this study is the
DeepLearnToolbox [Rasmus, 2012] for CNN written in MATLAB.
DeepLearnToolbox is a MATLAB/Octave toolbox for deep learning — see Part 1
of Appendix A.8.1. The code for LNN-1 is in Part 2 of the same appendix, while
Preprocessing is as in Part 3 of that Appendix.

RESULTS: Table 8.1a compare performances of present study (bottom 3) for
poses from the MRSDaily database , while Table 8.1b compare performances of
present study (bottom 3) for poses from the CD-60 database. Table 8.1c compares
Computing Time and Accuracy for the 3 networks of the Present Case Study.
Observe the perfect recognition by LNN-2 in the results of Table 8.1c.
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8.2. Medicine: Predicting Onset of Seizures in Epilepsy (J Tran)

The goal of this Case Study is to predict onset of epileptic seizures in Epilepsy
patients from Intracranial EEG (iEEG) data by using 3 deep learning neural
networks, Back Propagation (BP), LNN-1 and LNN-2 and comparing performance
and computational speed of these 3 networks. Prediction is carried out by detecting
the 20-30 minutes Pre-ictal (pre-seizure) phase as compared with the inter-ictal
phase (of no seizures) that usually lasts for days or even for a few weeks, and which
precedes the ictal phase of a few minutes. Obviously, computational speed is
almost as critical as accurate prediction (oncoming seizures being missed).

DATASET: The data for this case study was downloaded from https:/
www kaggle.com/c/seizure-prediction/data [epilepsy soc., 2014]. Both the inter-
ictal (no seizures) and the pre-ictal sections used as data were of same duration
(10 minutes). The pre-ictal data was taken between 15 and 5 minutes BEFORE
start of seizures. Each data window is of 30 seconds duration. All inter-ictal data
were randomly chosen at least a week before or after a seizure occurred.

PREPROCESSING: For both LNN-1 and LNN-2, the input data includes the
dominant frequency of the in each 1 sec. time window.
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COMPUTING: The convolutional program used was a Python Lasagne
version of CNN. The data was entered into the CNN network using
https://lasagne.readthedocs,org/, see Appendix A.8.2 below. The LAMSTAR
LNN-1 and LNNN-2 programs were both based on the Core code in Chapter 6.
Both LNN-1 and LNN-2 use five SOM input layers.

RESULTS: See Table 8.2 below. Results with CNN of 71% sensitivity were
reported in [Mirowski, 2009], though for a different data source (University of

Freiburg, Germany) and with different preprocessing.

Table 8.2. Comparison of results — Seizure prediction.

Method | Accuracy  Training Time Testing Time
CNN 70% 170 sec 3 sec

LNN-1 81.25% <1 sec <1 sec

LNN-2 81.25% <1 sec <1 sec

References

[epilepsy soc., 2014] American Epilepsy Society Seizure Prediction Challenge
https://www.kaggle.com/c/seizure—prediction/data, 2014.

[Mirowski, 2009] Mirowski P, Madhavan D, LeCun Y, Kuzniecky R,
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database/), Clinical Neurophysiology 120(11): 1927-1940 (2009).

8.3. Medicine: Image Processing: Cancer Detection (D Bose)

The goal is to build a classifier that can distinguish between cancer and control
patients from the mass spectrometry data. The classifiers used were BP, CNN,
LNN-1, and LNN-2 deep learning neural networks. The same data and the same
preprocessing was used in all neural networks used for this Case Study.

DATASET: The data in this example is from the FDA-NCI Clinical Proteomics
Program Databank [1]. Specifically, the data used was of High Resolution SELDI-
TOF Study Sets from the databank’s link -
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Appendices to Case Studies of Chapter 8

Introduction

Appendix numbers correspond to their respective subsection number in Chapter 8.
It is important to note that none of these appendices is the complete code for any
of the Case Studies. Their purpose is that together with the respective description
in Chapter 8, the appendix may help the reader to solve the problem described in
the case study. Full programs are far too long to fit a book with 20 case studies.
Furthermore, the codes involve proprietary library codes that are accessible by
license.

The appendices were selected, subject to the constrains mentioned, such that they
give the reader insight into how to integrate data of the kind that is needed in a
given study into the code described in Chapter 8 for that study. Certain appendices
aim to help integrating specific preprocessing methods of a Case Study. The
references given in Chapter & should also be consulted when attempting to
reconstruct a Case Study.

For any specific application of deep learning neural networks, the reader should
attempt to use library codes and integrate them, whenever possible. Selection of
preprocessing algorithms requires first to understand the problem to be solved.
Again, most preprocessing methods should serve to either reduce data or to add
knowledge that is not built into the neural network. Again, mathematical methods
for analyzing a given problem are often available in open-access library programs,
say codes of spectral and wavelets analysis, for entropy analysis, DNA coding,
market analysis, etc.

153
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A.8.1. Human Activity — Codes (A Bose) save decision decision;
generateConfusionMatrix(decision{50}");
Part 1: CNN Sigure; plot(er(1:50), 'LineWidth', 2);

xlabel("Number of epoch’);
| ylabel('Bit error (%)");

1. Code_CNN.m |
clear t'lll,' Flf)se all; cle; N Sigure; plot(ur(1:50), 'LineWidth', 2);
load (‘activity_dataset.mat’), | xlabel('"Number of epoch’);

R 15C] = sizeestdata) ylabel('Training time (sec));

= size(traindata);
[trR, trC] = size(traindata) Sigure; plot(correct(1:50)/600*100, 'LineWidth' 2);

. ("Number of epoch’);

ori=1:1tsR X o ,
ftestdata(i,3.’62) = normalizeData(testdata(i,3:62)); ylabel('Recognition rate (%)’);
end
fori=1:0R Part 2: LAMSTAR (LNN-1)
traindata(i,3:62) = normalizeData(traindata(i,3:62));
end |. Code LAMSTAR.m
testdata = double(reshape(testdata',8,8,1sR)); clear all; close all; clc;
traindata = double(reshape(traindata’8,8,trR)); load (‘activity_dataset.mat’);
testlabel = double(testlabel’);
trainlabel = double(trainlabel’); Jori=1:size(traindata, 1)
traindata(i,3:62) = normalizeData(traindata(i, 3:62 ),
rand('state’,0) end
tr=[J; disp('Training data acquisition done...");
fori=1:50 X train = traindata’;
cnn = []; [row, col] = size(X train);
chn.layers = { | numSubWords = 16;
struct("type’, 'i') %input layer
struct(‘type’, 'c', ‘outputmaps', 24, 'kernelsize', 5) %convolution layer nBit = 8;
struct(‘type', 's', 'scale', 2) %sub sampling layer alpha = 0.8;
Ja tol = le-5;
opts.numepochs = i; ' thresh = 0.9999;
opts.alpha = 0.85;
opts.batchsize = 30; Sflag = zeros(I,numSubWords);
disp('Forming Sub Words');
cnn = cnnsetup(cnn, traindata, trainlabel); Jor i = I:size(X train,2)
[enn, tir(i)] = cnntrain(enn, traindata, trainlabel, opts); tempX = reshape(X _train(-,i), nBit, nBit);
disp(['Total training time:' num2str(ttr(i))]); Jorj = I1:-numSubWords
ifj <= nBit
tic; X infi}(,:) = tempX(,:);
[er(i), correct(i), decision{i}] = cnntest(cnn, testdata, testlabel); else
1ts = toc; X_in{i}(j,:) = tempX{(:j - nBit)’;
B T ), end
end ; end
save It tr; check(l,:) = zeros(1, nBit);
save er er; Jor k = 1:numSubWords
I save correct correct; Jort=1:nBit
- ~"‘~.~E&r-~ ~
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if (X_in{i}(k.t) ~= check(1,1))

X norm{i}(k,:) = X_in{i}(k,:) / sqri(sum(X_in{i}(k,:)."2));
else

X _norm{i}(k,:) = zeros(1,nBit);

end
end
end
end

tic,
%%%%%%% %% %% %% %6 %% %% %6 %% %% %6%6%6%6 %%
disp('Dynamic Building of neurons’);
%%% %% % % %% % %% % %% %% %6 %% %%6%%6 %% % % %%
% Building of the first neuron is done as Kohonen Layer neuron
%(this is for all the subwords in the first input pattern for all SOM modules
i=1;
ct=1;
while (i <= numSubWords)
cl=0;
fort=1:nBit
if (X_norm{ct}(i,t)==0)
c=cl+l;
end
end
if (cl == nBit)
Zict}(i) = 0;
elseif (flag(i) == 0)
W{ij(:,ct) = rand(nBit, 1);

Appendices to Case Studies of Chapter 8

cl =cl+i;
end
end
if (¢l == nBit)
Z{ct}(i) = 0;
else
r(eti) = flag(i);
r_new=0;

Jor k= I:max(r(ct,i)),
Z{et}(i) = X_norm{ct}(i,)*W _norm{i}(.k);
if Z{ct}(i) >= thresh
r_new = k;
Slag(i) = r_new;
r(eti) = flag(i);
break;
end
end
if (r_new == ()
Slag(i) = flag(i) + 1,
r(cti) = flag(i);
W{i}(:,r(ct,i)) = rand(nBit, 1),
Y%flag(i) = r
W_norm{i}(:,r(ct,i)) = W{i}(.,r(ct,))/sqri(sum(W{i}(:,r(ct,i))."2));
Zict}(i) = X_norm{ct}(i,.)*W_norm{i}(:,r(ct.i));

while(Z{ct} (i) <= (I-tol)),
W_norm{i}(;,r(ct,i)) = W_norm{i}(:,r(ct,i)) + alpha*(X_norm{ct}(i,)’ -
W_norm{i}(:,r(ct,i));

Zict}(i) = X_norm{ct}(i,:)*W norm{i}(:,r(ct,i));

157

fag(i) = ct; end
W_norm{i}(:,ct) = W{i(:,ct)/sqri(sum(W{i}(:,ct)."2)), end
Zict}(i)= X_norm{ct}(i,;) *W_norm{i}; | end
while(Z{ct}(i) <= (I1-tol)), | end
W _norm{i}(:,ct) = W_norm{i}(:,ct) + alpha*(X_norm{ct}(i,.)' - W_norm{i}(:,ct)); ct=ct+l;
Z{ct}(i) = X _norm{ct}(i,: )*W_norm{i}(:,ct); end
end
end %%6%%%%%%%%%%% %%
rleti) =1; % Link Weights
P=itl: %%6%%%%%6%%%% % %% %%
end outNum = size(trainlabel,2);
ct=1;
rlet,:) =1; m_r = max(r);
ct =ctt+l; Jor i = I:numSubWords,
while (ct <= size(X_train,2)) _ L _w{i} = zeros(m_r(i),outNum),
Sori=1:numSubWords end
cl=0;
Jfort=1:nBit ct=1;

if (X _norm{ct)(it) == 0) disp('Link weights and output calculations’);
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2.

Z_out = zeros(size(X_train,2), outNum);
while (ct <= size(X train,2))
L = zeros(size(X_train,2), outNum),;
Jor i =1 : numSubWords
count = size(find(r(-,i) == r(ct,i)) , 1);
if (r(ct,i)~=0)
forj=1:outNum
if (trainlabel(ct,j)==0)
% L w{i}(r(ct,i)j) = L_w{i}(r(cti)j)- 5;
L w{iMr(cti).j) = L_w{i}(r(cti)j)/count - 5;
else
% L wii}(r(ct,i),j) = L_w{i}(r(cti)j) + 5;
L wfi}(r(ct,i),j) = L_w{i}(r(cti) j)/count + 5;
end
end
%  L(i,:) =L w{i}(r(cti),:);
L(i,:) = L_w{i}(r(ct,i),:)/count;
end
end
Z out(ct,:) = sum(L);
ct=ct+l1;
end
toc;
save W_norm W _norm
save L wL w
LAMSTAR test

generateConfusionMatrix.m
function generateConfusionMatrix(predicted)
classes=[100000;

010000;

001000

000100;

000010

000001];
Jorintf('+ + + +in');
Jprintf(| |Predicted Class [\n');
Sprintf('+ + + + + + + + +in);
Jprintf{"|Actual Class |Class] |Class2 |Class3 |Class4 |Class5 |Class6 |Other |\n);
Sprintf('+ + + + + + + + +in');

fori=1:6
classl = 0;
class2 = 0,
class3 = 0;
class4 = 0,
classy = 0;
class6 = 0;
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other = 0;
Jorj=1:100
if (predicted((i-1)*100+j, :) == classes(1,:))
classl = classl + 1;
elseif (predicted((i-1)¥100+j, ;) == classes(2,:))
class2 = class2 + 1;
elseif (predicted((i-1)¥100+, :) == classes(3,:))
class3 = class3 + 1;
elseif (predicted((i-1)*100+j, ;) == classes(4,:))
class4 = class4 + 1,
elseif (predicted((i-1)*100+j, ;) == classes(5,:))
class5 = class5 + 1;
elseif (predicted((i-1)*100+j, ;) == classes(6,:))
class6 = class6 + 1;
else
other = other + I;
end
end
Jorintf("|Class %6d\i\t | %d \t\t |%d \t\t |%d \(\t | %d \(\t |%d 1\t |%d i\t |%d e |\n, i, class1,
class2, class3, class4, classS, class6, other);
Jprintf('+ + + + + + + + +lnY);
end
end

. LAMSTAR test.m

%% LAMSTAR test.m

clear all;

load W_norm

load L w

load (‘activity dataset.mat’);
nBit = 8;

Sfori=1:size(testdata,l)
testdata(i,3:62) = normalizeData(testdata(i,3:62)),
end
X test = testdata’;
[row, col] = size(X test);
numSubWords = 16,
% To make 12 subwords
correct = 0;
wrong = 0;
errPer = (;
Jor i = 1:size(X test,2)
tempX = reshape(X_test(:,i), nBit, nBit);
Jorj=1:numSubWords
ifj <= nBit
X _infi}(,:) = tempX(,.);
else
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X _in{i}@,:) = tempX(:,j - nBit)';
end
end

check(l,:) = zeros(l, nBit);
Jor k= 1: numSubWords
fort=1:nBit
if (X _in{i}(kt) ~= check(1,1)
X norm{i}(k,:) = X _infi}(k,:) / sqrt(sum(X_in{i}(k,:).”2));
else
X _normf{i}(k,:) = zeros(1, nBit);
end
end
end

Jork=1:numSubWords - 1
if isempty(W_norm{k}),
Z out(k,:)=[000000];
else
Z =X norm{i}(k,:)*W_norm{k};
index(k) = find((Z == max(Z)),1);
L(k,:) = L_w{k}(index(k),:);
Z out(k,:) = L(k,:)*Z(index(k)),
end
end
Sfinal Z(i,:) = sum(Z out);
sgm = sigmoid(final_Z{(i,:));
decision(i,:) = sgm >= max(sgm);
err = xor(decision(i,:), testlabel(i,:));
errPer = errPer + sum(err)/size(err,2);
if (decision(i,;) == testlabell(i,:))
out = 'Correct’;
correct = correct + 1;

else
out = 'Wrong';
wrong = wrong + I;
end

disp(['Test Pattern: ' num2str(i) ' loutput: ' num2str(decision(i,:)) ' :" out]),
if rem(i,100) ==
disp(” e .
end
end
disp(['Correct: ' num2str(correct)]);
disp(['Wrong: ' num2str(wrong)]);
disp(['Bit Error (%): ' num2str(errPer/size(X test,2)*100) '%']);
generateConfusionMatrix(decision);
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4. normalizeData.m

% Code for normalizing MSR Daily Activity 3D Dataset & Cornell CAD-60
% Dataset

Junction [normalized_data] = normalizeData(Coordinates)

A.8.2. Predicting Seizures in Epilepsy (J Tran)
CNN: The code below uses Python’s https://lasagne.readthedocs.org/

def cnn_preprocess(input, detect, predict):

length = int(len(input)/23.6)
dimension = 224
padding = int((dimension - length)/2)
result = []
scaling =0
if detect is True:
scaling = 1000
if predict is True:
scaling = 300

while len(input) >= length.
emply_array = create_empty_array(dimension)

prev =-]
Jor index in range(0, length):

zero_axis = int(dimension/2)
scale = int(scaling/zero_axis)

if inputfindex] >= 0:
row = index+padding
col = int(inputfindex]/scale + zero_axis)
if col >= dimension:
col = dimension - 1
ifindex != 0:
if col < prev:
Jor i in range(col + 1, prev):
empty_array[row][i] =i
prev = col
if col > prev:
Jor i in range(col - 1, prev, -1):
empty_arrayfrow][i] = i

prev =col
else:
prev = col

empty_array[row][col] = col
elif input[index] < 0:

row = index-+padding

scaled = int(input[index]/scale)
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