
THz Multi-Layer Imaging via Nonlinear Inverse Scattering

A. Bose∗†, A. Kadu∗‡, H. Mansour∗, P. Wang∗, P. Boufounos∗, P. V. Orlik∗, and M. Soltanalian†
∗ Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA.

† University of Illinois at Chicago, Chicago, IL 60607, USA.
‡ Utrecht University, Utrecht, The Netherlands.

Abstract—In this paper, we address the problem of mitigating
nonlinear shadow effects in Terahertz time-domain spectroscopy
(THz-TDS) multi-layer imaging. To that end, we utilize a one-
dimensional (1D) nonlinear model to capture the interaction
between the dielectric permittivity profile and the THz wavefield
and recover the multi-layer structure by solving a 1D nonlinear
inverse scattering via iterative and sequential optimization over
frequencies. Numerical results confirm the effectiveness of the
proposed method.

I. INTRODUCTION AND PROBLEM OF INTEREST

In the recent years, electromagnetic (EM) waves in Tera-
hertz (THz) frequencies have attracted considerable amount
of interest in imaging, gas sensing, non-destructive evaluation
(NDE), security screening and many other applications due to
their noninvasive, noncontact, and nonionizing characteristics
[1]–[3].

To image a multi-layer sample, a THz time-domain spec-
troscopy (THz-TDS) system, shown in Fig. 1 (a), sends an
ultra-short pulse (1-2 picoseconds) in a raster scanning mode.
One challenge here is to mitigate the shadow effects caused by
non-uniform illumination penetrating from front layers to back
layers. This shadow effect has been observed in several THz-
TDS imaging experiments; see e.g., Fig. 3 in [1] and Fig. 9
in [2]. Our own experiment on multi-layer hardboard papers
also shows clear evidence of the shadow effect in Fig. 1 (b).
Current solutions perform THz multi-layer imaging using
a cascade of layer identification and contrast enhancement
steps [1], frequency-domain deconvolution [2] or a time-
domain sparse deconvolution via the ray-tracing model [3]
without explicitly accounting for the shadow effect. In this
paper, we propose to mitigate the shadow effect by utilizing
recent advances in nonlinear inverse scattering for a complete
characterization of the multi-layered sample structure.

II. PROBLEM FORMULATION AND PROPOSED SCHEME

Our approach models the nonlinear relationship between the
dielectric permittivity profile and the propagating wavefield
according to the scalar theory of diffraction [4]. Consider a
scenario where the THz sensor is placed in (x − y) plane
of a Cartesian coordinate system and the layered dielectric
medium extends in the z-direction. Assume that, as in the
raster scanning mode where the wave propagation is one
dimensional (1D), a point object placed at a distance r with
respect to the transceiver within a bounded depth domain
Ω ⊂ R is illuminated by an incident wave uin(r), and that the
scattered wave is denoted as usc(r), ∀r ∈ R. Using the scalar

(a) (b)
Fig. 1. THz-TDS multi-layer imaging (from [1]) and (b) the shadow of three
letters on the 1st layer is clearly shown on the 2nd layer.

Lippmann-Schwinger equation [4], the relationship between
wave and permittivity contrast can be established as

u(r) = uin(r) + k2
∫
Ω

g(r − r′)u(r′)d(r′)dr′, ∀r ∈ Ω, (1)

where u(r) is the total field. Note that d(r) = ε(r) − εb
represents the dielectric permittivity profile, where ε(r) is the
permittivity of the object, εb is the permittivity of the back-
ground and k is the THz wavenumber in vacuum. Furthermore,
g(r) = − i

2kb
e−ikb|r| is the 1D free-space Green’s function,

and kb = k
√
εb is the wavenumber of the background medium.

Note that d is assumed to be real, implying that the object is
lossless.

By taking the Fourier transform into frequency domain and
discretizing over depth domain z, the measured wavefield in
(1) can be reformulated as

u(ω) = uin(ω) +G(ω)Diag(d)u(ω), (2)

y(ω) = hT (ω)Diag(u(ω))d+ e(ω),

where ω is the angular frequency, y(ω) is the measurement
at ω and e(ω) is the measurement noise. Furthermore, h(ω)
represents the 1D Green’s function that maps the depth domain
Ω to the receiver domain Γ, G(ω) is the discretization of
Green’s function in transmitter to the depth domain, and d
characterizes the depth-domain permittivity profile in Ω.

To recover the depth structure, i.e., the dielectric permittiv-
ity, we consider the following nonlinear optimization problem,

min
d,u

∑
ω

Dω(d,u) +R(d)

s.t. u(ω) = (I−G(ω)Diag(d))−1uin(ω), (3)

where the data-fidelity term at the frequency ω is given as
Dω(d,u) �

1

2
‖y(ω)− hT (ω)Diag(u(ω))d‖22 (4)

and R(d) is a regularization term over the depth (z) do-
main and/or spatial (x − y) domains. Particularly, we use
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a total variation (TV) regularization term R(x) � τ‖Dx‖1
to preserve sharp edges in the depth domain, where D is
the discrete finite difference operator in 1D and τ > 0 is
a regularization parameter. Note that the above cost function
is non-convex due to the constraint in (3). To efficiently tackle
the problem, we resort to a quasi-Newton like global optimizer
such as limited-memory BFGS (L-BFGS) algorithm [5] and
use the alternating direction method of multipliers (ADMM)
[6] to handle the regularization term. We first make use of the
ADMM algorithm to project our current solution to the TV
regularization space and then use it to optimize d in (3) using
L-BFGS without the regularization term.

Furthermore, instead of optimizing (3) over all the frequen-
cies at once, we introduce an incremental frequency inversion
optimization framework to refine the estimated permittivity
profile [7]. Particularly, with Nω discrete frequencies, the
proposed framework iteratively solves the optimization prob-
lem from low frequencies to high frequency (e.g., ωn) while
keeping the individual cost functions at low frequencies (e.g.,
Di(d,ui), i < n) as a regularizer for the high frequency as,

(dn,u
∗) � argmin

d,u
Dω(d,un) +

n−1∑
i=1

λiDi(d,ui) +R(d)

s.t. u(ω) = (I−G(ω)Diag(d))−1uin(ω), (5)

where n = 1, · · · , Nω , and λi ∈ (0, 1] are regularization
parameters that account for the sub-total cost function at
lower frequencies (ωi < ωn) into the current cost function
at the frequency ωn. As a result, we sequentially solve Nω

subproblems in (5), and the sequence of solutions iteratively
proceed towards the global minimizer of (3) [7].

III. NUMERICAL SIMULATION RESULTS

The proposed method is numerically evaluated using syn-
thetically generated data with relatively large contrast variation
in the object permittivity. In our experiment, we consider a
three-layered sample of size 7 × 7 pixels, each pixel having
relative permittivities of 0.3 and 0.8. The thickness of each
layer and the air gap between two consecutive layers are
0.3 mm and 0.2 mm, respectively. The sample is placed 5
mm away from the THz transceiver. The transmitted THz
waveform covers 240 frequencies up to 1.82 THz. Fig. 2 (a)
and (b) show two dielectric constant profiles over the three-
layer structure and recovered results, respectively. It is seen
that a good recovery of the three-layer structure with small
elevated estimates in air gaps in between the layers. The results
in Fig. 3 shows mitigated shadow effects of the three-layer
imaging. Compared with the existing approach based on layer
identification and peak magnitudes (in the middle column of
Fig. 3), the results in the right column shows mitigated shadow
effects of the three-layer imaging.

IV. CONCLUSIONS

The shadow effect in the THz-TDS multi-layer image
has been mitigated by using recent advances in nonlinear
inverse scattering and by capturing the interaction between
the dielectric permittivity profile and the THz wavefield. The

(a) (b)
Fig. 2. Synthetic validation on a three-layer sample pixels with dielectric
permittivity profiles of (a) [0:3; 0:3; 0:8], (b) [0:3; 0:8; 0:3]

Fig. 3. The sliced view of the layered structure: ground truth, existing method
and our shadow removal using our proposed method

proposed method recovers the multi-layer structure by solving
a 1D nonlinear inverse scattering model via an iterative and
sequential optimization over frequencies. The effectiveness of
the proposed method is verified using numerical results.
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