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Mathematical Time Domain Study of Negative 
Feedback System Using Limiting Progression  

Arindam Bose 

Abstract—Every stable feedback system has certain finite limiting value with respect to time. This paper describes a mathematical 

analytical study for stable negative feedback system with the help of limiting progressions. Some limiting progressions descr ibed in this 

paper have a finite limiting value which can be predicted previously using the characteristics parameters of the system by analytical 

method. Some of these parameters are independent and primary properties of the system itself. The final value of the feedback system 

having transfer function as a limiting progression can be predicted and sometimes be controlled using the parametric solution. 

Index Terms—Control system, Limiting progression, Limiting progressive function, Negative feedback system, Predicting expression, 

Transfer function. 

———————————————————— 

1 INTRODUCTION

OSTof the negative feedback systems are stable with 
respect to time, as they converge to a finite limiting val-
ue. And marginally stable feedback systems are 

bounded-oscillatory in nature.Fig.1 describes a general confi-
guration a negative feedback system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We know that every negative feedback system has a damp-
ing coefficient (ζ) depending which they are classified into 
three sections: 

a. Under-damped system, 
b. Critically damped system and 
c. Over-damped system. 

Now in this paper we will discuss about the mathematical 
study of these three systems with the help of Limiting Pro-
gressions. 

Definition of Limiting Progressions: There are some sorts of 
series which are defined by a single valued iterative function 
(expression), where the result (dependent variable) is again 
used as the independent variable in the same expression and a 
limiting value can be reached as we go for infinite times of 
iteration. This type of series can be called as LIMITING PRO-
GRESSION. So, in Limiting Progression the output is totally 
feedback to the input, NOT partially. Rather we can say that 
the output in certain state is totally put as the input of the next 
state. 

i.e. if  is the iterative function of random variable  
and  be the order of iteration and is defined as 

 and  (constant), then  is 
called LIMITING PROGRESSIVE FUNCTION. 

And the equation  which predicts 
this constant term  is called PREDICTING EXPRESSION. 

Such that  

2 DISCUSSION ABOUT SOME TYPES OF LIMITING 

PROGRESSIONS 

Let us consider some types of limiting progressions. 

2.1 Type I 

Limiting Progressive Function:  

 
Where  represents set of REAL numbers and I represents set 
of INTEGERS. 

Predicting Expression:  

Form: 
where is a random variable, 

M 
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Fig.1.a. General Representation of Negative Feedback System 

 

 

Fig.1.b. Equivalent Representation of Negative Feedback Sys-

tem 
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is a real constant, 
is a real constant,  

isthe order of iteration.   … (1.1) 
This is one of the limiting series. Here we begin with  as a 
random variable, then apply to (1.1). We get a result. This re-
sult is now treated as . So further repeating this iterative 
method, we will be getting a limiting value where 

(constant). 
This series is an infinite series. But it has a limiting value 

towards the end. We can get the limiting value by considering 
the expression: 

     … (1.2) 

So (1.2) does not depend on , rather depends on  and . 
Now take an example: 
Ex. 1.1: Suppose we take a random set, such as , 

 and . 

So for  

From the expression(1.2) you can previously predict the limit-
ing value of the series, which will be   

Now if you take 9 digits after decimal point, the series will be: 
 

 

and so on. Next results will be: 

151·9375  for  
78·96875  for  
42·484375  for  
24·2421875  for  
15·12109375  for  
10·56054688  for  
8·280273438  for  
7·140136719  for  
6·570068359  for  
6·28503418  for  
6·14251709  for  
6·071258545  for  
6·035629272  for  
6·017814636  for  
6·008907318  for  
6·004453659  for  
6·00222683  for  
6·001113415  for  
6·000556707  for  
6·000278354  for  
6·000139177  for  
6·000069588  for  
6·000034794  for  
6·000017397  for  
6·000008699  for  
6·000004349  for  
6·000002175  for  
6·000001087  for  

6·000000544  for  
6·000000272  for  
6·000000136  for  
6·000000068  for  
6·000000034  for  
6·000000017  for  
6·000000008  for  
6·000000004  for  
6·000000002  for  
6·000000001  for  
6·000000001  for  
6·000000000   for  
6·000000000     for  
… value repeating  
or approx. 6. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
So (1.2) is true analytically. 
Ex.1.2: Now take another set for example for , 

,  and  and put them into (1.1) 

Here also our predicted result will be , as seen earlier. 

 

Fig.2.a. Output response of Ex.1.1 

 

Fig.2.b. More detailed and zoomed in output response of Ex.1.1 
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So the results will be: 

for  

Next iterative results will be:   
35·3225   for  
20·66125  for  
13·330625  for  
9·6653125  for  
7·83265625  for  
6·916328125  for  
6·458164063  for  
6·229082031  for  
6·114541016  for  
6·057270508  for  
6·028635254  for  
6·014317627  for  
6·007158813  for  
6·003579407  for  
6·001789703  for  
6·000894852  for  
6·000447426  for  
6·000223713  for  
6·000111856  for  
6·000055928  for  
6·000027964  for  
6·000013982  for  
6·000006991  for  
6·000003496  for  
6·000001748  for  
6·000000874  for  
6·000000437  for  
6·000000218  for  
6·000000109  for  
6·000000055  for  
6·000000027  for  
6·000000014  for  
6·000000007  for  
6·000000003  for  
6·000000002  for  
6·000000001  for  
6·000000000  for  
6·000000000      for  
…value repeating  
or approx. 6. 
 

 

 

 

 

 

 

 

 

 

 

 

 
So (1.2) is true analytically whatever  may be. 
 
Ex.1.3: Now we take another example: 

for  

The prediction for answer is:  

Now let’s see,  
The iterative results are:     
57·58677686  for   
45·47592378  for  
45·37583408  for  
45·37500689  for  
45·37500006  for  
45·375   for  
45·375      for  
…value repeating 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig.3. Output response of Ex.1.2 

 

Fig.4. Output response of Ex.1.3 
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Ex.1.4: Now we are taking another different example: 

for  

Predicted answer is:  

Now let’s see,  

The iterative results are:   
–15·96526316  for  
–5·159722992  for  
–5·728435632  for  
–5·698503388  for  
–5·700078769  for  
–5·699995854  for  
–5·700000218  for  
–5·699999989  for  
–5·700000001  for  
–5·7   for  
–5·7        for  
… value repeating 

 

 

 

 

 

 

 

 

 

 

 
 
Then our prediction was right and exact in all the cases. 
Some limiting values for real variable p : 
Take p be 1,2,3 and so on and n be another real variable. 
Then the results will be: 

for      [‘ ’ indicates the limiting value] 

for  

for  

for  

for  

for  

for  

for  

for and so on… 

Here  is not allowed as the term is not allowed. 

So, for  be the iterative function of random variable  
and  be the order of iteration and is defined as 

, then constant. 
So this is an example of limiting progression. 

2.2 Type II 

Limiting Progressive Function: 

 

Predicting Expression: 

 

Form: 

where is a random variable, 

is a real constant, 
is a real constant, 

is the order of iteration.   … (2.1) 
Here also we begin with  as a random variable, then apply it 
to (2.1). We get a value of . This result now will be 
treated as next . Further we are going to apply it to (2.1) and 
so on and so forth. 

This series also has no end; rather it has a limiting value. We 
can get the limiting value by considering the following expres-
sion: 

    … (2.2) 

So (2.2) does not depend on , rather depends on  and  and 
sign of . 
Let’s consider different cases: 

 
Case (1):  
In this case the limiting value will be:  

     … (2.3) 

Let’s take some examples. 

Ex.2.1: Initialize for  

 

 

Fig.5. Output response of Ex.1.4 
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So predicted answer is:  

 

Now let’s calculate  for different values of . 
The iterative results will be:   
5·68773396  
3·570067442  
3·056718667  
2·902564095  
2·852926624  
2·836570158  
2·831138868  
2·829330751  
2·828728301  
2·828527513  
2·828460587  
2·828438279  
2·828430843  
2·828428364  
2·828427538  
2·828427262  
2·828427171  
2·82842714  
2·82842713  
2·828427126  
2·828427125  
2·828427125     
…value repeating 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So (2.3) is proved analytically. 
If we take  
Here also the limiting value will be 2·828427125     . 
So (2.3) is true always for a single set of . 

 
Ex.2.2: Now let’s take another example: 
Take =27·345, =12·81, =2·9 
Our predicted answer will be: 

 

Now let’s calculate  for different values of . 
The iterative results will be:   
40·08891269  
45·74210241  
47·87093724  
48·62776152  
48·89150021  
48·98277586  
49·01428972  
49·02516127  
49·02891064  
49·03020359  
49·03064944  
49·03080319  
49·0308562  
49·03087448  
49·03088079  
49·03088296  
49·03088371  
49·03088397  
49·03088406  
49·03088409  
49·0308841  
49·0308841      
…value repeating 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
So (2.3) is proved analytically. 
 
Case (2):  
In this case the limiting value will be:  

                                                     … (2.4) 

Ex.2.3: Take an example:  (odd tak-
en). 
Now the expression will be: 

 

 

Fig.6. Output response of Ex.2.1 

 

 

Fig.7. Output response of Ex.2.2 
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Predicted answer:   

The iterative results will be:   
–8·159438048      
–7·04619721   
–6·709955537   
–6·601479188   
–6·565711522   
–6·553832083   
–6·549877049   
–6·548559235   
–6·548120022   
–6·547973624   
–6·547924826   
–6·54790856   
–6·547903138   
–6·54790133   
–6·547900728   
–6·547900527   
–6·54790046   
–6·547900438   
–6·547900431   
–6·547900428   
–6·547900427   
–6·547900427   
…value repeating 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So (2.4) is proved analytically. 
 
Ex.2.4: Take another example:  
(even taken). 
So the expression will be: 

is not defined. 

Case (3): ,  
Here the limiting value should be:  

 … (2.5)            

In this case the positive and negative limiting values will 
gradually come one after one and the system will be oscillato-
ry. 
Ex.2.5: Take an example:  
Predicted answer is: 

 

Now the iterative results for will be as follows:   
–2·5198421   
2·72158    
–2·792353286   
2·816351026   
–2·824396016   
2·827082783   
–2·82797894   
2·828277722   
–2·828377323   
2·828410524   
–2·828421591   
2·82842528   
–2·82842651   
2·82842692   
–2·828427056   
2·828427102   
–2·828427117   
2·828427122   
–2·828427124   
2·828427124   
–2·828427125   
2·828427125   
–2·828427125   
2·828427125   
…value repeating 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So (2.4) is proved analytically. 
 
 
 
 

 

Fig.8. Output response of Ex.2.3 

 

 

Fig.9. Output response of Ex.2.5 
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Case (4):  
In this case the predicted answer will be as (2·3) i.e. 

 

Ex.2.6: Example:  
Predicted answer:  

 

And the iterative results for will be:   
1·587401052  
1·714487966  
1·671033598  
1·685394614  
1·680593947  
1·682192648  
1·681659579  
1·68183725  
1·681778024  
1·681797766  
1·681791185  
1·681793379  
1·681792648  
1·681792891  
1·68179281  
1·681792837  
1·681792828  
1·681792831  
1·68179283  
1·681792831  
1·68179283  
1·681792831  
1·681792831  
1·681792831  
…value repeating 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So prediction in (2.3) is also proved analytically. 

But in case of  this series cannot be obtained. 
 

So, for  be the iterative function of random variable  
and  be the order of iteration and is defined as 

, then constant. 
So this is also an example of limiting progression. 

2.3 Type III 

Limiting Progressive Function: 
 

Predicting Expression:  
 

 
Form:  

where and is in degree  
is the order of iteration.   … (3.1)  

In this case also if we consider  as a random variable like all 
the previous types, we get a result from (3.1), then the answer 
again be considered as  and so on. In this case, this series will 
have a limiting value, which is 
0·9998477415310881129598107686798 if we consider 31 digits 
after decimal point. So, 

 
(constant) 
 
Ex.3.1: Now take an example: suppose we take any random 
variable . 
Then the iterative results will be: 
0·92050485345244032739689472330046  
0·99987094716081078813848034332851  
0·99984773446360205953437286377479  
0·99984774153324055527488336319716  
0·99984774153108745742149048473084  
0·99984774153108811315945862281788  
0·99984774153108811295974996481155  
0·99984774153108811295981078719796  
0·99984774153108811295981076867416  
0·9998477415310881129598107686798  
0·9998477415310881129598107686798  
…value repeating 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10. Output response of Ex.2.6 

 

 

 

Fig.11. Output response of Ex.3.1 
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Ex.3.2: Take another example:  
Then the iterative results will be: 
–0·57357643635104609610803191282616  
0·99994989238691479899521937732222  
0·9998477104188857772677217602915  
0·99984774154056350767740513976426  
0·99984774153108522717546536452938  
0·99984774153108811383869249723479  
0·99984774153108811295954310034415  
0·99984774153108811295981085019969  
0·99984774153108811295981076865497  
0·99984774153108811295981076867981  
0·9998477415310881129598107686798  
0·9998477415310881129598107686798      
…value repeating 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Ex.3.3: Take another example:  
The iterative results will be: 
0·39073112848927375506208458888909  
0·99997674699528153455312175786626  
0·99984770223921958855808301788233  
0·99984774154305467057989511316751  
0·99984774153108446847789970519695  
0·99984774153108811406975807530513  
0·99984774153108811295947272803272  
0·99984774153108811295981087163197  
0·99984774153108811295981076864845  
0·99984774153108811295981076867981  
0·9998477415310881129598107686798  
0·9998477415310881129598107686798      
…value repeating 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then our prediction was exactly right. This is proved now by 
analytical method. 
So, as we can see 

 
In this case we can say  
where  = 0·9998477415310881129598107686798 
This type of series is not applicable for , or other 
trigonometric expression. 
So, for  be the iterative function of random variable  
and  be the order of iteration and is defined as 

, then constant. 
So this is also an example of limiting progression. 

2.4 Type IV 

Limiting Progressive Function: 
 

Predicting Expression: 
 

 
Form: 

is a value, not in 
degree, is the order of iteration.  … (4.1) 
In this case also if we consider  as a random variable, we get 
a result from (4.1) for  iteration, then this value is again 
used as  for  iteration and so on. In this case also 
this series will have a limiting value which is 89·35883917 if 
we consider 8 digits after point. If  be positive, the limiting 
value will be positive and if  be negative, the limiting value 
will be negative. 
 
Ex.4.1: Now let’s take an example:  
Then the iterative results will be:  
88·72696998  
89·35427352  
89·35880641  
89·35883893  
89·35883916  

 

Fig.12. Output response of Ex.3.2 

 

 

Fig.13. Output response of Ex.3.3 
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89·35883917  
89·35883917     
…value repeating. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ex.4.2: Take another example:  
Then the iterative results will be:  
89·99752331  
89·36338891  
89·35887181  
89·3588394  
89·35883917  
89·35883917  
…value repeating. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex.4.3: Take another example:  
Then the sequential results will be:  
–89·9975331  
–89·36338891  
–89·35887181  
–89·3588394  
–89·35883917  
–89·35883917  

…value repeating 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So, this prediction was true. 
As we can see  
So, we can say  where x = 89·35883917 
This type of series is not applicable for , or oth-
er inverse trigonometric expression. 
So, for  be the iterative function of random variable  
and  be the order of iteration and is defined as 

, then constant. 
So this is also an example of limiting progression. 

2.5 Type V 

Limiting Progressive Function: 

 

Predicting Expression: 
 

 
Limiting Progressive Function: 

 

Predicting Expression: 
 

Form(I): 
where  

is the order of iteration.    … (5.1) 
In this case also if we consider  as a random variable, we get 
a result from (5.1) for  iteration, then this value is again 
used as  for  iteration and so on. In this case also 
this series will have a limiting value which is 0·017453292 if 
we consider 9 digits after decimal point. 
Ex.5.1.1: Now consider an example: Let’s take  
The successive iterative results will be:  
0·006818459  

 

Fig.14. Output response of Ex.4.1 

 

 

Fig.15. Output response of Ex.4.2 

 

 

Fig.16. Output response of Ex.4.3 
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0·017453292  
0·017453292  
and thus so on. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
So, it is now clear that, this series has a limiting value: 
0·017453292. 
 
Ex.5.1.2: Now let’s take another example:   
The iterative results will be:   
0·017452746  
0·017453292  
0·017453292  
……… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here also the limiting value is 0·017453292. 
Actually this value is: 0·017453292250022980737699843973 
considering 31 digits after decimal point. 

 
Form (II): 

where  

is the order of iteration.    … (5.2) 

In this case also if we consider  as a random variable, we get 
a result from (5.2) for  iteration, then this value is again 
used as  for  iteration and so on. In this case also 
this series will have a limiting value which is 0·017453293 if 
you consider 9 digits after point. 
 
Ex.5.2.1: Now consider an example: Let’s take  
The successive results will be:=   
–0·012519227   
0·017453292  
0·017453293  
and thus so on. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
So, it is now clear that, this series has a limiting value 
0·017453293. 
 
Ex.5.2.2: Now let’s take another example:  
The iterative results will be:    
0·017454384  
0·017453293  
0·017453293  
……… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.17. Output response of Ex.5.1.1 

 

 

Fig.18. Output response of Ex.5.1.2 

 

 

Fig.19. Output response of Ex.5.2.1 

 

 

Fig.20. Output response of Ex.5.2.2 
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Here also the limiting value is 0·017453293. 
Actually this value is: 
0·017453293059783998466834689798considering 31 digits after 
decimal point. However, we have seen than these limiting 
values of those two series are about same (up to 8 digits after 
decimal point). 

Moreover series has no such property. 

So, for  be the iterative function of random variable  
and  be the order of iteration and is defined as 

,then constant. 
So these are also the examples of limiting progression. 
There are many other types of limiting progression. 
 
 

3 APPLICATION OF LIMITING PROGRESSION IN THE 

CONTEXT OF TRANSFER FUNCTION OF A FEEDBACK 

SYSTEM 

For type I: , , 
,  

In reference with Ex.1.1: ,  and . 
Here  is the initial input and  are the consecutive inputs 
and  is the -th output of the system. Again  and  are 
the independent parameters of the feedback system. Here the 
system is called the feedback system as the output is fully or 
partially used as input to the same system. is the trans-
fer function of the feedback system. 
Here from the iterative outputs of the system, it is clear that 
the limiting value (final value) does not depend on the input 
or the output of the system rather depends on the parameters 
of the system. So if we have only and , we will have the fi-
nal value of the system, whatever be the input of the system. 
So we can predict the system. In these two cases the predicted 
value is always 6. 
We have another output parameter of the system which is . 
is equivalent to ‘time’ in time domain analysis of the system. 

Here the value of  where the limiting value is attained, is not 
only depends on  and  but also the  i.e. the input of the 
system. In reference with Ex.1.1 and Ex. 1.2, the value of  and 

 are same in both case i.e. 2 and 3 respectively. But while 
reaching the limiting value, the value of  is 44 and 39 in the 
two different cases respectively, where the inputs were 2341 
and 123.29 respectively. Hence we can conclude that the value 
of  also depends on initial input of the system. 

For type II: 
 

Case (1): In reference with Ex.2.1:  
In this case also, we can conclude in the same way through the 
essence of the previous discussion, that   and  are acting as 
independent parameters of the feedback system and  is acting 
as dependent parameter which is dependent on ,  and . 
As in Ex.2.1 we have discussed using different values of  

viz. 23 and 1345, but in both cases, . We have seen 
that the limiting value of the progression is 2·828427125 in 
both cases. 
Case (2): Here  has a limitation while , it should be odd 
always, because th root of a negative real number is always 
imaginary when  is even integer. The rest of the conclusion is 
same. 
Case (3): When , the feedback system will have special 
characteristics. The system will be oscillatory in nature, but 
not like positive feedback. The limiting value will have the 
same amplitude both in positive and negative side of -axis 
(time axis). So this system will have marginal stability (much 
like sinusoidal in nature). As in Ex.2.5 , 
the limiting value is ±2·828427125. 
Case (4): When , a single limiting value is attained, from 
both side of -axis. Initially the system will have a decaying 
oscillating nature, and gradually it will attain a limiting value. 
As described in Ex.2.6. , the system 
will attain a limiting value of 1·681792831 after passing 
through an initial decaying oscillation. 

 
For type III: , 

typeIV:  
andtype V:  

  

there is no independent parameter of these types of feedback 
systems. is only acting as dependent parameter which is de-
pendent only on  i.e. the initial value of . These are all 
the examples of constant limiting progression, as whatever be 
the initial input condition, the final output of the system is 
always same. So we can’t control the output of these systems. 

4 CONCLUSIONS AND FUTURE WORKS 

Prediction of output and controlling of a system based on the 

prediction can be done using the mathematical study of the 

system. This study is not complete yet, as the expression of  

where the limiting value is attained is not clear yet. As  is de-

pendent on the system parameter and the initial input value, 

so it must have an expression. Working on these expressions 

requires time domain analysis of the system. So this paper 

gives an initial concept and steps towards the mathematical 

study. All the software simulations are done in MATLAB. 
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