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As a future research avenue, it would be of great

interest to use a relatively large number of partitions

for a sufficiently large piece of image that may appear

in different orientations, as well as, partitions with

crosscut shreds and also with incomplete set of

shreds.

• Recovering lost information by reconstruction of

shredded documents is one of the interesting fields

of research in forensic and investigative sciences.

• Shredding of documents is often practiced to

destroy potentially incriminating evidences.

• Restoration of shredded signals remains a relevant

and significant challenge in archaeological and

forensic efforts.

• We present a generic, efficient non-convex

optimization method that employs iterative sparsity

enhancement of the observed signal.

• A key assumption: most natural signals are sparse

in a given representation domain.

• A novel non-convex approach to find the best

matching of strip-shredded document.

• The approach is based on the enhancement of

sparsity of the observed signal.

• The algorithm was tested on several shredded

document pages and images.

• The results obtained suggest that the proposed

algorithm demonstrates a great efficiency in terms

of the reconstruction rate and computational time.

3. Problem Formulation

Goal: Reconstruction of a finite-length discrete-time

signal 𝒙 ∈ ℂ𝑀𝑁. where 𝑀 and 𝑁 are the number of

shredded parts and the length of each part,

respectively.

The shredded signal be,

𝒚 = 𝒚1
𝑇 𝒚2

𝑇 𝒚3
𝑇… 𝒚𝑚

𝑇 𝑇

Assumption: The original signal 𝒙 is sparse in a

given representation domain such as the Discrete

Fourier Transform (DFT) domain. Let 𝒗 ∈ ℂ𝑀𝑁 be the

representation of 𝒙 in the DFT domain as,

where 𝒗 belongs to the set of all vectors with at most

𝑠 non-zero values: 𝝌𝑠 for 𝑠 ≪ 𝑀𝑁 and 𝚿 is the DFT

matrix given by,

𝚿 𝑙,𝑝 =
1

𝑀𝑁
exp

𝑗2𝜋𝑙𝑝

𝑀𝑁
,

𝑙, 𝑝 = 1,2,… ,𝑀𝑁.
The desired signal partitions {𝒙𝑚} can be obtained via

a permutation of {𝒚𝑚} through the permutation matrix

𝑷 ∈ ℝ𝑀×𝑀 , viz.

From (1) and (2), the final optimization problem

becomes,

min
𝑷,𝒗

𝑷⨂𝑰𝑁 𝒚 −𝚿𝐻𝒗 2

s.t 𝑷 is a permutation matrix of size

𝑀,

𝒗 ∈ 𝝌𝑠,

𝒗 2 = 𝒚 2,

while 𝑠 remains unknown.

Observation 1: For given 𝑠, (3) can be tackled using

cyclic minimization.

• For fixed 𝑷:

Let ෥𝒗 = 𝚿 𝑷⨂𝑰𝑁 𝒚 such that, 𝒗 − ෥𝒗 2
2 = 𝑐 −

2𝒗𝑇෥𝒗 where 𝑐 = 𝒗 2
2 + ෥𝒗 2

2 is constant.

The optimal 𝒗 can be given as

• For fixed 𝒗: (3) can be written as

where ෝ𝒗 = 𝚿𝐻𝒗. As 𝑷 only consists of {0,1} values,

we have, σ𝑘=1
𝑀 𝑝𝑚,𝑘 ⋅ 𝑦𝑘,𝑙 = 𝑦𝜋𝑚

where 𝜋 ഥ𝑚 is the only column in ഥ𝑚th row of matrix

𝑷⨂𝑰𝑁 where the respective entry is 1. Hence, the

optimization problem can simply be written as,

We consider finding an 𝑀-sized subset that covers all

the partitions and also has the lowest cost. To

accomplish the mentioned task, we build 𝑼 such that:

𝑼𝑘,𝑙 ≜ 𝒚𝑘 − ෝ𝒗𝑙 2
2 for 𝑘, 𝑙 = 1,2,···,𝑀.

Step 0: Set 𝑠 = 1
Step 1: Monotonically decrease the objective of (3) via

cyclic minimization until convergence using (5) and (8)

Step 2: 𝑠 ← 𝑠 + 1
Step 3: Repeat Step 1 until the decrease in the

objective of (3) is negligible.

The minimization problem for finding the optimal

permutation matrix 𝑷𝑜𝑝𝑡 can be recast as,

The problem is in fact an Assignment Problem that

can be solved efficiently using the Hungarian

Algorithm with an O(𝑀2) computational cost.

Observation 2: 

𝝌1 ⊂ 𝝌2 ⊂ 𝝌3 ⊂ ⋅⋅⋅
We can always use the appropriate values of 𝒗
obtained for a smaller 𝑠 to search for an updated 𝒗 as

we increase 𝑠.

The proposed approach has been tested on several

two-dimensional image signals which are known to be

sparse in DFT domain. We have used gray scale

images of size 512×512 for this purpose. The

shredded instances are generated by virtually cutting

the document pages vertically into 16 shreds

producing 512×32 strips.
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2. Shredded Documents and the 

Problem with Reconstruction

• The documents are typically shredded by using

mechanical shredding devices producing thin strips

often termed as ‘spaghetti’ or smaller rectangular

pieces, or circular fragments named as ‘confetti’ or

hexagons.

• The problem of shredded document recovery

requires enormous amount of time and effort if

done manually.

𝒙 = 𝚿𝐻𝒗 (1)

𝒙 = 𝑷⨂𝑰𝑁 𝒚 (2)

(3)

min
𝒗

𝒗 −𝚿 𝑷⨂𝑰𝑁 𝒚 2

s.t. 𝒗 ∈ 𝝌𝑠,

𝒗 2 = 𝒚 2.
(4)

𝒗𝑜𝑝𝑡 = 𝒚 2

෥𝒗⨀𝝁

෥𝒗⨀𝝁 2

(5)

min
𝑷

෍

𝑚=1

𝑀

෍

𝑙=1

𝑁

෍

𝑘=1

𝑀

𝑝𝑚,𝑘 ⋅ 𝑦𝑘,𝑙 − ෝ𝒗𝑚,𝑙

2

5. Final Algorithm

𝑷𝑜𝑝𝑡 = argmin
𝑷
[𝟙𝑇(𝑷⨀𝑼)𝟙] (8)

(6)

6. Extensions to Two-Dimensional Case

min
𝑷,ഥ𝑽

𝑷⨂𝑰𝑁 ഥ𝒀 −𝚿𝐶
𝐻ഥ𝑽𝚿𝑅

𝐻
2

min
{𝜋𝑚}

෍

ഥ𝑚=1

𝑀𝑁

𝑦𝜋𝑚 − ෝ𝒗 ഥ𝑚
2 (7)

Fig. 1. Rectangular strip-shredded Sumerian inscription: 

(a) original and (b) ‘spaghetti’ fragments.

Fig. 2. Reconstruction results: (a) original images, (b) 

scrambled shredded strips, (c) reconstructed images.
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