Arindam Bose, Aria Ameri, Matthew Klug and Mojtaba Soltanalian

1. Motivation

- The problem of reconstruction of a matrix from an incomplete set of samples or measurements, particularly known as matrix completion , arises in a large area of applications including recommendation schemes, sensor network localization, collaborative filtering, quantum state tomography [1-2] etc.
Matrix recovery based on comparisons between ratings is a very natural approach in recommendation scenarios as users are more comfortable with comparing products than giving exact ratings [3].

2. Problem Formulation

Consider a $c \times p$ rating matrix \boldsymbol{M} with $[\boldsymbol{M}]_{i, j}=m_{i, j}$ with rank r and c and p denoting the number of users and the number of items, respectively. We do not observe the matrix \boldsymbol{M}. However, we observe a set of triplets: $\left\{c^{(i)}, p^{(j)}, p^{(k)}\right\}$ which simply illustrates a comparison: $c^{(i)}$ th user prefers $p^{(j)}$ th item over $p^{(k)}$ th item.
We then form the one-bit observation matrix $\boldsymbol{A} \in\{-1,0,1\}^{d \times c p}$ with each of its row being a comparison.
For example:

$\operatorname{vec}(\boldsymbol{M})=[3,4,3: 4,5,5: 2,3,5: 3,2,4]^{T}$

However, suppose we only have access to some comparison information:
$\left\{c^{(1)}, p^{(2)}, p^{(1)}\right\},\left\{c^{(2)}, p^{(1)}, p^{(3)}\right\}$
$\left\{c^{(2)}, p^{(1)}, p^{(4)}\right\},\left\{c^{(3)}, p^{(4)}, p^{(3)}\right\}$
We can formulate the comparison matrix \boldsymbol{A}
$A=$
$\left[\begin{array}{ccc|ccc|ccc|ccc}1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0\end{array}\right]$ $\left[\begin{array}{cccccccccccc}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1\end{array}\right]$
and, the one-bit comparison data λ to be:
$\lambda=\operatorname{sgn}(\boldsymbol{A} \cdot \operatorname{vec}(\boldsymbol{M}))=\left[\begin{array}{llll}-1 & 1 & 1 & -1\end{array}\right]^{T}$
We define $\boldsymbol{\Omega}$ to be the diagonalized matrix of $\lambda ;$ i.e.

$$
\boldsymbol{\Omega}=\operatorname{Diag}(\boldsymbol{\lambda})
$$

Hence the problem of recovering the ranking matrix \boldsymbol{M} will reduce to
recover \boldsymbol{M}
s. t. $\quad \boldsymbol{\Omega} \cdot \boldsymbol{A} \cdot \operatorname{vec}(\boldsymbol{M}) \geq 0$ $\operatorname{rank}(\boldsymbol{M}) \leq r$ $0 \leq \operatorname{vec}(M) \leq \eta$

Goal: To identify the low-rank matrix \boldsymbol{M} given the matrices \boldsymbol{A} and $\boldsymbol{\Omega}$.

3. Proposed Approach

We expect the rating matrix to have a small rank which is a very common practice in collaborative filtering for practical reasons, we can formulate \boldsymbol{M} as $\boldsymbol{M}=\boldsymbol{X} \boldsymbol{Y}^{\boldsymbol{T}}$ and perform the alternating optimization over two tall matrices \boldsymbol{X} and \boldsymbol{Y} of size $c \times r$ and $p \times r$, respectively
hus, the matrix recovery problem can be rewritten as:

$$
\begin{array}{cc}
\min & \left\|\boldsymbol{M}-\boldsymbol{X} \boldsymbol{Y}^{T}\right\|_{F}^{2} \\
\boldsymbol{M}, \boldsymbol{X}, \boldsymbol{Y} & \boldsymbol{\Omega} \cdot \mathbf{A} \cdot \operatorname{vec}(\mathbf{M}) \geq 0 \\
\text { s.t. } & 0<\operatorname{vec}(\boldsymbol{M})<\eta
\end{array}
$$

which can be efficiently tackled by resorting to a cyclic minimization algorithm. The optimization problem with respect to the variable \boldsymbol{M} is essentially a convex linearlyconstrained quadratic program (QP), leading to a low-cost solution. Moreover, the minimizers \boldsymbol{X} and \boldsymbol{Y} can be obtained analytically.
$\left\|\boldsymbol{M}-\boldsymbol{X} \boldsymbol{Y}^{T}\right\|_{F}^{2}$
$=\|\operatorname{vec}(\boldsymbol{M})-(\boldsymbol{Y} \otimes \boldsymbol{I}) \operatorname{vec}(\boldsymbol{X})\|_{F}^{2}$
which yields the optimal \boldsymbol{X} and \boldsymbol{Y} to be
$\operatorname{vec}(\boldsymbol{X})=(\boldsymbol{Y} \otimes \boldsymbol{I})^{\dagger} \operatorname{vec}(\boldsymbol{M})$ $\operatorname{vec}(\boldsymbol{Y})=(\boldsymbol{X} \otimes I)^{\dagger} \operatorname{vec}\left(\boldsymbol{M}^{T}\right)$

4. The Rank-Quantization

 Bottleneck$$
\boldsymbol{M}=\boldsymbol{x}_{1} \boldsymbol{y}_{1}^{T}+\boldsymbol{x}_{2} \boldsymbol{y}_{2}^{T}+\ldots+\boldsymbol{x}_{r} \boldsymbol{y}_{r}^{T}
$$

where $\boldsymbol{x}_{k} \in \mathbb{R}^{c}$ and $\boldsymbol{y}_{k} \in \mathbb{R}^{p}$. We assume that the entries of $\left\{\boldsymbol{x}_{k}\right\}$ and $\left\{\boldsymbol{y}_{k}\right\}$ are stored via a q-bit quantization system with a predefined set of elements and a cardinality of 2^{q}. As $r(c+p) q$ bits are required to store a large rating matrix in general, we need at least $r(c+p) q$ meaningful comparisons to recover \boldsymbol{M}. The bottleneck is:

$$
r q \leq \frac{c p-1}{c+p}
$$

5. The Rank Determination Bound

The low-rank matrix recovery algorithms will be much more effective if an initial good estimate of the matrix rank is available. Any generic row \boldsymbol{m} of \boldsymbol{M} is given as a linear combination of at most r vectors $\left\{\boldsymbol{m}_{k}\right\}$.

$$
\boldsymbol{m}=\sum_{k=1} \alpha_{k} \boldsymbol{m}_{k}
$$

The data provide comparisons of different entries of \boldsymbol{m} which can finally (or at the best performance of the system) lead to an ordering of the elements in \boldsymbol{m}. The number of such orderings is bounded as $\mathcal{O}\left(n^{2 r}\right)$ which is considerably smaller than n !. Such a bound will help with determining a lower bound for r.

4. Results

We first consider the reconstruction of a rank-3 target rating matrix \boldsymbol{M} with $c=$ 20 and $p=30$. The matrix \boldsymbol{M} is generated randomly and normalized.

Fig. 1: Normalized Frobenius error of the low-rank matrix fig. 1 recover vs. the iteration number for
 Fig. 2: An example of low-rank matrix recovery based on one
bit comparison measurements with $(c ; p ; r)=(15 ; 20 ; 3)$

5. References

[1] J. F. Cai, E. J. Candes, and Z. Shen, "A Singular Value Thresholding Algorithm for Matrix no. 4, pp. 1956-1982, Mar. 2010.
[2] M. A. Davenport, Y. Plan, and M. V. D. Berg E.and Wootters, 1 -bit matrix completion, Information and Inference: A Journal of the IMA vol. 3, no. 3, pp. 189-223, 2014.
[3] Y. Lu, and S. N. Negahban. "Individualized rank aggregation using nuclear norm regularization. 2015 53rd Annual Allerton Conference o Communication, Control, and Computing (Allerton) (2015): 1473-1479.

