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MIMO and active sensing

Its been over 10 years since the benefits of MIMO has
been recognized

Virtual spatial channels, an adaptive degree of freedom.
Broadening of the transmitter beam pattern.
Rapid detection and mitigation of strong clutter discretes.
Jointly optimize both the transmit and receive DoF.
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Jointly exploit Tx-Rx DoF

Couple of ways...
Maximize SICR by jointly designing the probing signal and the
receive filter coefficients.
Control distribution of transmit power by approximating a
desired beampattern by optimizing the transmit covariance
matrix.

Why transmit covariance?
Extra degrees of freedom.
Acts as an oracle for waveform design problem.
Need low cross-correlation sidelobe? No problem.
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The traditional case

Uniform linear array (ULA)
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What we are up to

The spatial diversity
Antenna position and/or alignment introduces additional
degrees of freedom.
Smart antenna position designing can save a lot of
resources[1].

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna
position for MIMO radar transmit beampattern matching design, 2018
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NULA

Let’s call it non-uniform linear array (NULA)

When do we require it?
Adaptive beamforming for autonomous vehicle.
Aerial beamforming using drones.
Localization applications.
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Objective

The goal is to...

Jointly design
– the covariance matrix
– antenna selection vector

Match a desired beam pattern
Minimize cross-correlation sidelobe.
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Preliminaries

Antenna selection vector:

p = [p1, p2, · · · , pM ]T , pm ∈ {0, 1}

Steering vector:

a(θ) = [1, ej 2π
λ

d sin θ, · · · , ej 2π
λ

(M−1)d sin θ]T

Space-time transmit waveform:

s(l) = [s1(l), s2(l), · · · , sM(l)]T

The baseband waveform at azimuth location θ:

ULA : x(l) = a(θ)Hs(l)
NULA : x(l) = (p � a(θ))Hs(l), l ∈ {1, · · · , L}.
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Preliminaries (contd.)

The power produced by the waveform at θ

P(θ) = E{|x(l)|2}
= (p � a(θ))HE{s(l)sH(l)}(p � a(θ))

= pT Re
{

R �
(
a(θ)aH(θ)

)∗}
p,

where

R = E
{

s(l)sH(l)
}
,

and the cross-correlation terms between θ and θ̄

P̄(θ, θ̄) , pT Re
{

R �
(
a(θ)aH(θ̄)

)∗}
p.



10/24

Background Formulation Algorithm Discussion

Preliminaries (contd.)

The power produced by the waveform at θ

P(θ) = E{|x(l)|2}
= (p � a(θ))HE{s(l)sH(l)}(p � a(θ))

= pT Re
{

R �
(
a(θ)aH(θ)

)∗}
p,

where

R = E
{

s(l)sH(l)
}
,

and the cross-correlation terms between θ and θ̄

P̄(θ, θ̄) , pT Re
{

R �
(
a(θ)aH(θ̄)

)∗}
p.



11/24

Background Formulation Algorithm Discussion

Problem formulation

The desired beampattern d(θ)
Assume some partial information regarding the target positions
{θ̂k}K̂k=1 are known.

d(θ) =
{

1, θ ∈ [θ̂k − 42 , θ̂k + 4
2 ], k ∈ {1, · · · , K̂},

0, otherwise,

θ̂ = [−50◦, 0◦, 50◦]
4 = 20◦
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The objective function

J(p,R, α) = 1
K

K∑
k=1

wk
∣∣∣pT Re

{
R �

(
a(θk)aH(θk)

)∗}
p − αd(θk)

∣∣∣2︸ ︷︷ ︸
beampattern matching term

+ 2ωc

K̂ (K̂ − 1)

K̂−1∑
p=1

K̂∑
q=p+1

∣∣∣pT Re
{

R �
(
a(θ̂p)aH(θ̂q)

)∗}
p
∣∣∣2

︸ ︷︷ ︸
cross-correlation term
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Problem formulation (contd.)

The optimization formulation

min
R,p,α

J(R,p, α)

s.t. R � 0,

Rmm = c
M , for m = 1, · · · ,M,

‖p‖1 = N,
pm = {0, 1}, for m = 1, · · · ,M,

α > 0.
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Optimization of R and α

(
R(t), α(t)

)
= arg min

R,α
J(p(t−1),R, α)

s.t. R � 0,

Rmm = c
M , for m = 1, · · · ,M,

α > 0.

– Can be formulated as a constrained convex quadratic program.
– Any convex optimization toolbox e.g. CVX for Matlab, CVXPY,

CVXOPT for Python can be used.
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Optimization of p

p(t+1) = arg min
p

J(p,R(t), α(t)),

s.t. ‖p‖1 = N,
p ∈ {0, 1}M .

Binary optimization problem (NP hard).

Does convex relaxation work?
– Relax p into [0, 1], optimize for p, then map it back to {0, 1}M

using hard thresholding.
– No exact solution.
– The solution is not always consistent.
– Search on real number makes the search space too big to

handle.
Need sophisticated tool to properly handle it.
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Optimization of p (contd.)

We propose a tool inspired from dynamic programming and
evolutionary algorithm.

For a given (R, α), the solution of J(p): p is a binary vector
of length M with N non-zero elements.
In other words, our search space is a subset of vertices of a
hypercube in an M-dimensional space.
Given the solution p(k) (parent solution), a new set of
candidate solutions p(k+1)

CS is generated as:

p(k+1)
CS =

{
p | H

(
p,p(k)

)
= 1, ‖p‖1 < ‖p(k)‖1

}
.
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Optimization of p (contd.)
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red vertex ⇒ the parent solution,
yellow vertices ⇒ the candidate solutions pCS,
blue vertex ⇒ the selected solution for the next iteration.

– The cardinality of the new candidate solution is upper
bounded by

∣∣∣p(k+1)
CS

∣∣∣ ≤ ‖p(k)‖1.
– Select and propagate the best candidate solution:

p(k) = arg minp∈p(k)
CS

J(p).
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The algorithm

Table: The Proposed Joint Optimization Method

Step 0: Initialize the antenna position vector p(0) = 1M , the
complex covariance matrix R(0) ∈ CN×N , and the scaling factor
α(0) ∈ R+, and the outer loop index t = 1.

Step 1: Solve the convex program for R, α and obtain(
R(t), α(t)).

Step 2: Employ the proposed binary optimization approach
for p to obtain the vector p(t+1).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion
is satisfied, e.g. H

(
p(t), p(t−1)) = 0.
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Numerical examples

Experimental setup I:
M = 15,N = 10, θ̂ = {−50◦, 0◦, 50◦},4 = 20◦

Figure: The transmit beampattern design

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna
position for MIMO radar transmit beampattern matching design, 2018



19/24

Background Formulation Algorithm Discussion

Numerical examples

Experimental setup I:
M = 15,N = 10, θ̂ = {−50◦, 0◦, 50◦},4 = 20◦

10
-3

10
-2

10
-1

10
-0

10
1

10
2

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
r
o

s
s
c
o

r
r
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

1 & 2

2 & 3

1 & 3

Figure: Normalized crosscorrelation coefficients

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna
position for MIMO radar transmit beampattern matching design, 2018
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Numerical examples

Experimental setup I:
M = 15,N = 10, θ̂ = {−50◦, 0◦, 50◦},4 = 20◦

Figure: Final antenna positions

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna
position for MIMO radar transmit beampattern matching design, 2018
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Numerical examples (contd.)

Experimental setup II:
M = 15,N = 10, θ̂ = {0◦},4 = 60◦

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna
position for MIMO radar transmit beampattern matching design, 2018
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Numerical examples (contd.)

Experimental setup III:
M = 20,N = 15, θ̂ = {−60◦,−30◦, 0◦, 30◦, 60◦},4 = 10◦
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Numerical examples (contd.)

Computational cost
We consider M = 4 and N = 3 as initialization, and then linearly
scale M and N by the factor of β ∈ {1, 2, 3, 4}.

[1] Z. Cheng et al. Joint optimization of covariance matrix and antenna
position for MIMO radar transmit beampattern matching design, 2018
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Summary

We jointly design the probing signal covariance matrix as well
as the antenna positions to approximate a given beampattern
while minimizing the cross-correlation sidelobe.
We propose a binary optimization framework based on
dynamic programming which is realizable in polynomial time.
The algorithm is highly parallelizable and scalable.
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Thank you
and

Questions?
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