Did You Know : The Other Sides of Pythagoras
Did You Know : The Other Sides of Pythagoras

Pythagoras of Samos (570-495 BCE)

Pythagoras of Samos (570-495 BCE)

We all who know even a little bit about mathematics, have heard the name ‘Pythagoras’ and his famous theorem ‘Pythagoras’ theorem’. ¬†He is often called the first ‘true’ mathematician and it is ¬†probably true that we owe pure mathematics to Pythagoras. Although his contribution was undoubtedly important, he remains a controversial personality¬†in the mathematician community. We found no mathematical writings of Pythagoras himself, and much of the Pythagorean thought comes from the writings of Philolaus and other Pythagorean scholars. Indeed, it is unclear and an unsettled fact whether many (or any) of the his theorems were in fact solved by Pythagoras personally or by his followers.

He established his school of mathematics at Croton in southern Italy around 530 BCE. It is said that the school was the nucleus of a rather bizarre Pythagorean sect. The custom practiced in the school was profoundly mystical, and Pythagoras imposed his quasi-religious philosophies, strict vegetarianism, communal living, secret rites and odd rules on all the members of his school. Some rules were even weird and bizarre and apparently superstitious random edicts such as never urinating towards the sun, never marrying a woman who wears gold jewelry, never passing an ass lying in the street, never eating or even touching black fava beans, etc.

The members in the school were divided into two groups: ‘mathematikoi’ (or ‘learners’), who extended and developed the more mathematical and scientific work that Pythagoras himself began, and the ‘akousmatikoi’ (or ‘listeners’), who focused on the more religious and ritualistic aspects of his teachings. There was always a certain amount of¬†conflict¬†between the two groups and eventually the sect became caught up in some fierce local fighting and ultimately dispersed. Resentment built up against the secrecy and exclusiveness of the Pythagoreans. In 460 BCE, all their meeting places were burned and destroyed, with at least 50 members killed in Croton itself.

The over-riding dictum of Pythagoras’s school was ‚ÄúAll is number‚ÄĚ or ‚ÄúGod is number‚ÄĚ, and the Pythagoreans effectively practiced a kind of numerology or number-worship, and considered each number to have its own character and meaning. For example, the number one was the generator of all numbers; two represented opinion; three, harmony; four, justice; five, marriage; six, creation; seven, the seven planets or ‚Äúwandering stars‚ÄĚ; etc. Odd numbers were thought of as female and even numbers as male.¬†The holiest number of all was “tetractys” or ten, a triangular number composed of the sum of one, two, three and four. It is a great tribute to the Pythagoreans’ intellectual achievements that they deduced the special place of the number 10 from an abstract mathematical argument rather than from something as mundane as counting the fingers on two hands.

Pythagoras Tetractys

Pythagoras Tetractys

Nonetheless, Pythagoras and his school was largely responsible for introducing a more rigorous mathematics than what had gone before, building from first principles using axioms and logic. For example, before Pythagoras, geometry was merely a collection of rules derived by empirical measurement. Pythagoras discovered that a complete system of mathematics could be constructed, where geometric elements corresponded with numbers, and where integers and their ratios were all that was necessary to establish an entire system of logic and truth.

UDabkHe is mostly remembered for what is known as Pythagoras’ Theorem: that, for any right-angled triangle, the square of the length of the hypotenuse (the longest side, opposite the right angle) is equal to the sum of the square of the other two sides. Written as an equation: a2 + b2 = c2. What Pythagoras and his followers did not realize is that this also works for any shape: thus, the area of a pentagon on the hypotenuse is equal to the sum of the pentagons on the other two sides, as it does for a semi-circle or any other regular (or even irregular shape).

Pythagoras‚Äô Theorem and the properties of right-angled triangles seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry, and it was touched on in some of the most ancient mathematical texts from¬†Babylon,¬†Egypt and, dating from over a thousand years earlier and probably dates from well before Pythagoras’ birth. It was Pythagoras, though, who gave the theorem its definitive form, although it is not clear whether Pythagoras himself definitively proved it or merely described it. Either way, it has become one of the best-known of all mathematical theorems, and as many as 400 different proofs now exist, some geometrical, some algebraic, some involving advanced differential equations, etc.

However, It soon became apparent, that non-integer solutions were also possible, so that an isosceles triangle with sides 1, 1 and ‚ąö2, for example, also has a right angle, as the Babylonians had discovered centuries earlier. However, when Pythagoras‚Äô student Hippasus tried to calculate the value of ‚ąö2, he found that it was not possible to express it as a fraction, thereby indicating the potential existence of a whole new world of numbers, the irrational numbers. This discovery rather shattered the elegant mathematical world built up by Pythagoras and his followers, and the existence of a number that could not be expressed as the ratio of two of God’s creations jeopardized the sect’s entire belief system.

Among his other contributions in geometry, Pythagoras (or at least, the Pythagoreans) also realized that the sum of the angles of a triangle is equal to two right angles (180¬į), and probably also the generalization which states that the sum of the interior angles of a polygon with n sides is equal to (2n – 4) right angles, and that the sum of its exterior angles equals 4 right angles. They were able to construct figures of a given area, and to use simple geometrical algebra, for example to solve equations such as a(ax) = x2 by geometrical means.

The Pythagoreans also established the foundations of number theory, with their investigations of triangular, square and also perfect numbers (numbers that are the sum of their divisors). They discovered several new properties of square numbers, such as that the square of a number n is equal to the sum of the first n odd numbers (e.g. 42 = 16 = 1 + 3 + 5 + 7). They also discovered at least the first pair of amicable numbers, 220 and 284 (amicable numbers are pairs of numbers for which the sum of the divisors of one number equals the other number, e.g. the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, of which the sum is 284; and the proper divisors of 284 are 1, 2, 4, 71, and 142, of which the sum is 220).

One of the most important yet forgotten discoveries Pythagoreans made was that the intervals between harmonious musical notes always have whole number ratios. For instance, playing half a length of a guitar string gives the same note as the open string, but an octave higher; a third of a length gives a different but harmonious note; etc. Non-whole number ratios, on the other hand, tend to give dissonant sounds. In this way, Pythagoras described the first four overtones which create the common intervals which have become the primary building blocks of musical harmony: the octave (1:1), the perfect fifth (3:2), the perfect fourth (4:3) and the major third (5:4). The oldest way of tuning the 12-note chromatic scale is known as Pythagorean tuning, and it is based on a stack of perfect fifths, each tuned in the ratio 3:2.

The ratios between harmonious musical tones

The ratios between harmonious musical tones

The mystical Pythagoras was so excited by this discovery that he became convinced that the whole universe was based on numbers, and that the planets and stars moved according to mathematical equations, which corresponded to musical notes, and thus produced a kind of symphony, the ‚ÄúMusical Universalis‚ÄĚ or ‚ÄúMusic of the Spheres‚ÄĚ.

About the author

Scientific History Blog Writer ‚ÄĘ Art enthusiast and Illustrator ‚ÄĘ Amateur Photographer ‚ÄĘ Biker and Hiker ‚ÄĘ Beer Enthusiast ‚ÄĘ Electrical Engineer ‚ÄĘ Chicago

Pallabi Sen

You have a lot of patience. I am inspired!

Arindam Bose

You had a lot of patience for reading it and that’s inspiring too.


Hey..Thanks for taking some time and posting this useful information on Pythagoras..
I have bookmarked your site and Its worth to revisit your website again.

Leave a Reply

Twitter Feed
%d bloggers like this: